

الجمهورية الجزائرية الديمقراطية الشعبية
Democratic and Popular Republic of Algeria / République
Algérienne Démocratique et Populaire
وزارة التعليم العالي والبحث العلمي
Ministry of Higher Education and Scientific Research
Ministère de l'Enseignement Supérieur et de la Recherche
Scientifique
المدرسة الوطنية العليا للبيطرة ربيع بوشامة
Higher National Veterinary School Rabie Bouchama
École Nationale Supérieure Vétérinaire Rabie Bouchama

Ordre N° : 032/PFE/2025

Final Year Project

In partial fulfillment of the requirements for the degree of Doctor of Veterinary Medicine

Field: Natural and Life Sciences

Specialty: Veterinary Sciences

THEME

Veterinary AI: Revolutionizing Precision in Animal Health and Diagnostics through Innovative Solutions.

Presented by:

ALLOUNE Anes

Defended publicly on 30/06/2025 before the examination panel composed of :

Dr. BAROUDI D.

Professor

Chairperson

Dr. GUESSOUM M.

MCA

Supervisor

Dr. BAAZIZI R .

MCA

Examiner

Academic Year: 2024 /2025

Statement of Honour

I, the undersigned, **ALLOUNE Anes**, declare that I am fully aware that plagiarism of documents or parts of documents published in any form of media, including the Internet, constitutes a violation of copyright as well as an act of fraud.

As a result, I commit to citing all the sources I have used in writing this thesis.

Signature

Acknowledgments

First and foremost, I give thanks to Almighty God for granting me the health, patience, and strength to carry out and complete this work.

*I would like to express my heartfelt gratitude to **Madam GUESSOUME Meryem**, my supervisor, for her unwavering guidance, availability, and valuable advice throughout this project. I am especially thankful for her dedication and support through every stage—whether in good health or unwell, she continued to guide and motivate me with remarkable commitment. Her efforts were truly instrumental to the successful completion of this final year work.*

*My sincere thanks also go to **Madam DERGUINI Madina**, whose support has been a source of connection and discovery. Without her, I would not have had the opportunity to meet and work with the wonderful people who accompanied me throughout this journey.*

*I am also grateful for the presence and participation of the **President of the jury** and the **Examiner**, whose insightful remarks and constructive feedback greatly enriched this work.*

*I warmly acknowledge the support, collaboration, and friendship of my colleagues: **HAMOU LHADJ Serine, Melissa, MESRANE Serine , LAHDIR Nouara** . Their encouragement and shared efforts made this academic journey both productive and memorable.*

*I am also grateful for the support and help of **Dr AIGOUN Fares** and **Dr FTATA Saiid** .*

Finally, I extend my deepest thanks to all those who, directly or indirectly, contributed to the realization of this project. Your support has been sincerely appreciated.

Dedication

All praise and gratitude to God, for the beginning as much as for the end.

With all my heart, I dedicate the fruit of this achievement and the harvest of years sown along the path of knowledge to those who have stood by me with unwavering love, support, and belief.

To my dear **father, Larbi**, who guided me through these years with quiet strength and silent encouragement. Your calm presence and steady push from the sidelines gave me the courage to keep going, even when I doubted myself.

To my beloved **mother, Nadia**, whose unconditional love, warm heart, and unshakable belief in me have been my refuge in every moment. You have carried my dreams in your prayers and lit my path with your tenderness.

To my **sister Zineb**, the sunshine of my days, always there to lift my spirit with your laughter and love.

To **Raihan**, my little sister, who comforts me without words and looks up to me in ways that remind me to keep striving.

To **Nabih**, my big brother, a source of clarity and light in every part of my life.

To **Shoaib**, who brought a refreshing breeze into my life, full of warmth, joy, and kindness.

To **Chocho and Chako**, my childhood friends, who've walked with me through the years and shared in the shaping of who I am.

To my wonderful colleagues and dear friends thank you for your constant support, your presence, your laughter, and your belief in me during the hardest and brightest times.

To **Madam GUESSOUUME Meryem**, more than a teacher, your care, love, and support have touched my heart. Thank you for standing beside me, guiding me, and inspiring me with sincerity and dedication.

To all the teachers who have accompanied me along this journey, thank you for your time, your patience, and the knowledge you so generously shared.

And finally,
To myself

For every sleepless night, for every tear held back and every smile pushed through.

For believing, even in silence, even in doubt.

For rising, again and again.

This moment is not an end

It is a quiet, powerful beginning...

List of Figures

Figure 01: Schematic Illustrating Machine Learning Integration in Veterinary Diagnostic.

Figure 02: This schematic demonstrates supervised (top) and unsupervised (bottom) learning approaches in veterinary radiology. In supervised learning, labeled radiographic images are used to train an AI model to classify new inputs. In contrast, unsupervised learning groups unlabeled images based on shared features.

Figure 03: Illustration of deep learning applications in veterinary diagnostic imaging, highlighting pattern recognition, image classification, and automated interpretation.

Figure 04: A schematic representation of the NLP workflow in veterinary contexts, illustrating data collection, processing, and clinical application.

Figure 05: Schematic representation of Clinical Decision Support Tool (CDST) integration with Electronic Medical Records (EMR) for disease prediction and management, including use cases such as Dilated Cardiomyopathy (DCM).

Figure 06: Illustration of AI applications such as Convolutional Neural Networks (CNN) and Principal Component Analysis (PCA) in veterinary imaging, including biomarkers like NT-proBNP (N-terminal pro B-type Natriuretic Peptide).

Figure 07: illustration show how Enhancing Veterinary care with AI tools improving diagnostic accuracy, treatment personalization, and health monitoring in veterinary practice.

Figure 08: Application of predictive modeling to enhance diagnostic accuracy and decision making in veterinary systems.

Figure 09 : Wearable technologies in Veterinary medicine Illustrates the application of wearable devices for continuous physiological monitoring and health assessment in animals.

Figure 10: Sensor applications in Veterinary and livestock management enabling real time monitoring and data driven decision making in animal health and husbandry.

Figure 11 : AI in Veterinary Telemedicine Illustrates the integration of AI in remote veterinary care, enhancing monitoring and management in diverse and resource limited settings.

Figure 12 : Schematic Representation of the SMILES Encoding Workflow.

Figure 13 : Molecular Fingerprint Generation Process Binary encoding scheme indicating the presence (1) or absence (0) of molecular substructures.

Figure 14: MAP4 Atom Pair Encoding Strategy Circular substructures centered around atoms j and k are extracted at radii $r = 1$ and $r = 2$ and represented as SMILES strings.

Figure 15 : Machine Learning-Based Analysis of NSAIDs , visualization of pharmacokinetic and pharmacodynamic (PK/PD) profiles using machine learning methodologies.

Figure 16 : Application of Molecular Fingerprints in Drug Discovery, illustration of the operational framework and role of molecular fingerprints in computational drug discovery.

Figure 17 : Schematic Representation of an Antimicrobial Resistance Prediction Model Highlighting Key Genetic Markers. The model incorporates the detection of **mecA** (conferring methicillin resistance) and **blaZ** (encoding β -lactamase, an enzyme responsible for the degradation of β -lactam antibiotics).

Figure 18 : Machine Learning-Based Prediction of Antimicrobial Resistance in Veterinary Clinical Settings

Figure 19: ML Driven Prediction of Antimicrobial Resistance in Veterinary Clinical practice Illustration adapted and conceptualized

Figure 20: AI-Based Antimicrobial Resistance Forecasting for Herd-Level Surveillance and Intervention Strategies.

Figure 21: AI-Enabled Management of Multidrug-Resistant (MDR) Infections in Veterinary

List of Abbreviations

AI : Intelligence Artificielle

ML : Machine Learning (*Apprentissage Automatique*)

DL : Deep Learning (*Apprentissage Profond*)

NLP : Natural Language Processing (*Traitemet du Langage Naturel*)

CDST : Clinical Decision Support Tool (*Outil d'Aide à la Décision Clinique*)

EMR : Electronic Medical Record (*Dossier Médical Électronique*)

CNN : Convolutional Neural Network (*Réseau de Neurones Convolutifs*)

SVM : Support Vector Machine (*Machine à Vecteurs de Support*)

PCA : Principal Component Analysis (*Analyse en Composantes Principales*)

CBC : Complete Blood Count (*Numération Formule Sanguine*)

CKD : Chronic Kidney Disease (*Maladie Rénale Chronique*)

IRIS : International Renal Interest Society

NSAIDs : Non-Steroidal Anti-Inflammatory Drugs (*Anti-inflammatoires Non Stéroïdiens*)

PK : Pharmacokinetics (*Pharmacocinétique*)

PD : Pharmacodynamics (*Pharmacodynamie*)

IgY : Immunoglobuline Y

MAP4 : MinHashed Atom Pair up to four bonds

SMILES : Simplified Molecular Input Line Entry System

TPSA : Topological Polar Surface Area (*Surface Polaire Topologique*)

NER : Named Entity Recognition (*Reconnaissance des Entités Nommées*)

SNOMED-CT-Vet : Systematized Nomenclature of Medicine Clinical Terms - Veterinary

PPG : Photoplethysmography (*Photopléthysmographie*)

IRT : Infrared Thermography (*Thermographie Infrarouge*)

MIC : Minimum Inhibitory Concentration (*Concentration Minimale Inhibitrice*)

IC₅₀ : Half-maximal Inhibitory Concentration

EC₅₀ : Effective Concentration 50%

Ki : Inhibition Constant

WGS : Whole Genome Sequencing (*Séquençage du Génome Complet*)

PACS : Picture Archiving and Communication System

Abstract

This study examine the integration of artificial intelligence (AI) in veterinary medicine, with a focus on diagnostics, pharmacotherapy, and health monitoring.

Through machine learning (ML), deep learning (DL), and natural language processing (NLP), AI technologies are being used to improve diagnostic accuracy, clinical decision-making, and disease surveillance. Applications include image analysis, predictive modeling, wearable sensor technologies, and drug development, particularly for antimicrobial resistance (AMR).

The work highlights the transformative potential of AI in supporting evidence-based veterinary practice and enhancing animal health outcomes across both clinical and field settings.

Keywords: artificial intelligence, veterinary medicine, machine learning, diagnostics, sensors, antimicrobial resistance.

Résumé

Cette étude explore l'intégration de l'intelligence artificielle (IA) en médecine vétérinaire, en mettant l'accent sur le diagnostic, la pharmacothérapie et la surveillance de la santé animale.

Grâce au machine learning (ML), deep learning (DL) et au traitement automatique du langage naturel (NLP), les technologies d'IA permettent d'améliorer la précision diagnostique, l'aide à la décision clinique et la surveillance épidémiologique. Les applications abordées incluent l'analyse d'images, la modélisation prédictive, les capteurs connectés, et le développement médicamenteux, notamment contre la résistance antimicrobienne (RAM).

Ce travail souligne le potentiel transformateur de l'IA pour une pratique vétérinaire fondée sur les preuves et orientée vers des soins de santé animale améliorés.

Mots clés : intelligence artificielle, médecine vétérinaire, apprentissage automatique, diagnostic, capteurs, résistance antimicrobienne.

الملخص

تتناول هذه الدراسة دمج تقييم الذكاء الاصطناعي في الطب البيطري، مع التركيز على التشخيص، والعلاج الدوائي من خلال تقييم التعلم الآلي والتعلم العميق ومعالجة اللغة الطبيعية، تُستخدم أنواع الذكاء، ومرافقة صحة الحيوانات تشمل التقييمات تحليلاً للصور الطبية، الاصطناعي لتعزيز رقة التشخيص، ودعم اتخاذ القرار السريري، ومتانة الأمراض، والمناجم التنبؤية، وأجهزة الاستشعار القبلة للارتداء، وتطوير الأدوية خصوصاً لمواجهة مقاومة مصادر الميكروبات يبرز هذا العمل الإمكانيات التحويلية للذكاء الاصطناعي في دعم الطب البيطري البني على الآلة وتحسين نتائج الصحة الحيوانية في العيادات والميدان الذكاء

الاصطناعي، الطب البيطري، التعلم الآلي، التشخيص، أجهزة : المفاهيم الكلمات

Summary

Acknowledgments

Dedication

List of Figures

List of Abbreviations

Abstract

Introduction

CHAPTER I

LITERATURE REVIEW: FUNDAMENTAL CONCEPTS OF AI

I.1	Key AI Subfields in Veterinary Practice	3
I.1.1	Introduction to Machine Learning (ML) in Veterinary Science	3
I.1.1.1	Structuring and Interpreting Veterinary Clinical Data	3
I.1.1.2	Supervised vs. Unsupervised ML Paradigms	3
I.1.1.3	Unsupervised Algorithms for Herd Health Monitoring	5
I.1.1.4	Diagnostic Modeling and Algorithm-Specific Applications	5
I.1.2	Deep Learning (DL)	7
I.1.2.1	Principles and CNN Architecture	7
I.1.2.2	Applications in Radiology and Internal Medicine	8
I.1.2.3	Enhancing Diagnostic Practice in Rural Areas	8
I.1.3	Natural Language Processing (NLP)	9
I.1.3.1	From Clinical Narratives to Computable Data	9
I.1.3.2	Linguistic Processing in Veterinary NLP	10
I.1.3.3	Applications in Case Retrieval and Monitoring	10
I.1.3.4	Surveillance and Zoonotic Outbreak Detection	11
I.1.3.5	Real-Time NLP in High-Volume Settings	11
I.2	Clinical Decision Support and Imaging Tools	12
I.2.1	Clinical Decision Support Tools (CDSTs)	12
I.2.1.1	Clinical Relevance and Scope	12
I.2.1.2	Decision-Making in Companion Animal Care	13
I.2.1.3	Herd-Level and Population Medicine Integration	13
I.2.1.4	Technical Architecture and AI Integration	13
I.2.1.5	Prognostics, Alerts, and Medication Safety	14
I.2.1.6	Interoperability and Ethical Considerations	14
I.2.2	Imaging Techniques and Data Processing	15
I.2.2.1	Image Quality Assessment and Optimization	15
I.2.2.2	Pattern Recognition in Diagnostic Imaging	16
I.2.2.3	Classification in Sonography & Cardiology	16
I.2.2.4	Dimensionality Reduction and PACS Integration	17
CHAPTER II	AI IN VETERINARY DIAGNOSTICS	
II.1	Automated Analysis of Clinical Data	18
II.1.1	DL Models for Structured Clinical Interpretation	18
II.1.2	NLP for Veterinary Record Mining	18
II.1.3	Predictive Trend Analysis in Chronic Disease	19

II.2	Predictive Veterinary Diagnostics	19
II.2.1	Transition to Predictive Veterinary Medicine	19
II.2.2	DL Applications in Parasitology	20
II.2.3	CNN-Based Diagnostic Workflows	20
II.2.4	Clinical and Epidemiological Field Advantage	20

CHAPTER III CONNECTED DEVICES AND MONITORING SYSTEMS

III.1	Wearable Technologies	22
III.1.1	Sensor Types and Principles	22
III.1.2	Physiological and Behavioral Monitoring	23
III.1.3	Reproductive, Welfare, and Stress Monitoring	24
III.1.4	Toward Predictive and Individualized Care	24
III.2	Behavior and Vital Sign Monitoring	25
III.2.1	Behavior Recognition in Companion Animals	25
III.2.2	AI in Laboratory Animal Models	25
III.2.3	Postoperative and Orthopedic Tracking	25
III.2.4	Precision Livestock Farming Applications	26
III.3	Telemedicine Integration	28
III.3.1	AI-Powered Veterinary Telemedicine	28
III.3.2	Interoperability and Cloud Infrastructure	28
III.3.3	Predictive Surveillance and Risk Mapping	28
III.3.4	One Health and Public Health Relevance	29

CHAPTER IV PREDICTIVE ANALYTICS IN PHARMACOTHERAPY

IV.1	AI in Drug Development	30
IV.1.1	SMILES Encoding	30
IV.1.2	Molecular Fingerprints for Drug Discovery	31
IV.2	AI in Antimicrobial Resistance	36
IV.2.1	Genomic Sequence	37
IV.2.2	Phenotypic Susceptibility Profiles	39
IV.2.3	Stewardship and Surveillance	40
IV.2.3.1	Protocol Optimization in Dairy Calves	41
IV.2.3.2	Predictive Modeling in Livestock Systems	41
IV.2.3.3	Integration in Equine Practice and Strategic AMR Control	43

CHAPTER V GENERAL CONCLUSION AND PERSPECTIVES

V.1	Limitations of AI in Veterinary Practice	45
V.2	Recommendations for Future Development	46
	Conclusion	48
	References and Appendices	49

Introduction

While a few instructors at our institutions possess solid expertise in artificial intelligence (AI), their familiarity often remains limited to generative platforms like ChatGPT and Gemini. These belong to a much broader AI spectrum spanning across data classification, analytical analytics, and objective interpretation of complex, high-dimensional datasets. Such capabilities are vital in enhancing clinical workflows with high accuracy, particularly through repetitive processing of extensive veterinary records, epidemiological surveillance, and interpretation of laboratory results. AI's impact on veterinary diagnostics is part of a long legacy. Since the establishment of the Conference of Veterinary Laboratory Diagnosticians in 1958 (later the AAVLD), there has been persistent interest in standardizing nomenclature, laboratory protocols, and informatics to improve animal and public health (**Carter & Smith, 2021**).

Initial investigations in the 1960s into mainframe-based veterinary data retrieval established the foundational architecture for modern veterinary informatics systems. Despite considerable advancements, the absence of comprehensive standardization persists, underscoring the ongoing need for contemporary initiatives. The progression of artificial intelligence reflects the broader trajectory of computer science, characterized by the evolution toward more abstract and expressive programming paradigms. The progression of artificial intelligence reflects the broader trajectory of computer science, evolving from assembly languages to contemporary tools such as Python (**Brooks, 1975; Reeves et al., 2024**).

Where early programming required meticulous attention to low-level syntax, contemporary generative AI enables intuitive human–computer interaction through natural language. This “prompts-first” paradigm makes AI accessible to novice learners and aligns directly with the way veterinary practitioners engage with clinical reasoning and decision-making. In modern veterinary education, especially within epidemiology, diagnostic imaging, and precision medicine, subfields of AI are being integrated into core practice. Machine learning models facilitate epidemiological forecasting and predictive analytics; speech recognition technologies support hands-free clinical examinations; image classification algorithms improve the interpretation of radiographic images; and natural language processing (NLP) technique's structure unformatted clinical narratives for enhanced data utility. Collectively, these systems emulate critical phases of clinical reasoning, encompassing anamnesis, data integration, diagnostic formulation, and individualized treatment planning (**Riege et al., 2020**).

The initial objective of this study is to critically assess both current and emerging applications of Artificial Intelligence (AI) within veterinary medicine, with particular emphasis on its roles in diagnostic imaging, clinical decision support systems (CDSS), epidemiological surveillance, and pharmacotherapeutic innovation. Specifically, this research seeks to:

- Analyze the contribution of ML, DL, and NLP to improve diagnostic accuracy and optimizing clinical workflows in veterinary practice.
- Investigate the integration of AI-driven technologies in predictive diagnostics and epidemiological surveillance within veterinary practice.
- Investigate the application of wearable technologies and connected devices for continuous monitoring of physiological and behavioral parameters in animal health management.
- Assess the impact of artificial intelligence (AI) on pharmacological innovation, with emphasis on in silico drug modeling and the prediction of antimicrobial resistance (AMR) patterns.
- Examine the prevailing challenges and prospective developments associated with AI implementation in companion and production animal healthcare, with precise attention to infrastructural, regulatory, and ethical barriers in rural and resource limited environments.

This objective aligns with the wide aim of promoting evidence-informed, data-centric, and technologically included methodologies within contemporary veterinary context .

CHAPTER I : FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

I.1. Breakdown of Key AI Subfields in Veterinary Practice

I.1.1. Machine Learning (ML)

I.1.1.1. Introduction to Machine Learning in Veterinary Science

ML forms one of the fundamental core pillars of AI, with notable implications in veterinary biomedical sciences due to its capacity to refine diagnostic sensitivity and Validity through repetitive learning from large-scale clinical datasets. This capability is particularly evident in interpretation of imaging and laboratory analysis, where ML models can be trained on archived radiographic images, hematobiochemical profiles, or cytological slides to improve the precision of disease detection. For example, supervised learning algorithms have been employed to assist in identifying pulmonary consolidation in canine thoracic radiographs and in distinguishing hemoparasites on microscopically stained blood films.

This regular data driven optimization enables more objective clinical decision making, supports symptom manifestation surveillance, and contributes to Unifying diagnostic protocols across practices with variable technical capacity. (Szlosek et al., 2024)

I.1.1.2. Structuring and Interpreting Veterinary Clinical Data

Veterinary clinical data may exist in different structural variants, distributed from structured datasets, such as complete blood counts (CBC), serum biochemistry profiles, or labeled diagnostic imaging (thoracic radiographs), to semi-structured information, including clinical case records, evolution sheets, prescription logs, or periodic follow-up observations during herd health monitoring.

These data types constitute a fundamental part to both companion and animal production practice. Their correct interpretation, particularly when aided by artificial intelligence (AI) systems, augment diagnostic accuracy, ensures continuity in therapeutic protocols, and supports efficient surveillance of zoonotic and production-limiting diseases. as illustrated in figure 1 (Szlosek et al., 2024)

I.1.1.3. Learning Paradigms: Supervised vs. Unsupervised ML in Practice

ML, a foundational subfield of artificial intelligence (AI), equips computational systems with the capacity to learn autonomously from clinical and epidemiological data, Augmentin

effectiveness over time without Demanding Detailed programming. In contrast to rule-based systems diagnostic approaches Controlled by fixed Regulation Derived from Prescribed methodologies, ML algorithms Adjust In real time by Recognizing statistical patterns, correlations, and Emerging patterns within Elaborate Data collections.

This Versatility Supplies ML especially Pertinent to current veterinary clinical contexts , In the setting of the Heterogeneity of clinical presentations and environmental Factors criteria flexible, Statistical Validated corrective measure Procedures. Notably, supervised ML has demonstrated strong utility in veterinary clinical assessment , a radiological visualization is cornerstone of the Algerian veterinary curriculum, primarily in thoracic and abdominal radiology. Supervised learning models are taught to recognize patterns using labeled datasets, such as Classified thoracic radiographs, supporting them to detect pathological conditions Consisting of lobar pneumonia, cardiomegaly, and bronchial thickening with high resolution .

These systems Replicate the diagnostic deductive logic of a specialized veterinarian, Providing clinical decision support in regions where specialist interpretation is restricted , specifically several rural wilayas. For example, a supervised ML model taught on canine thoracic X-rays is designed to automatically distinguish congestive heart failure key factors, increase diagnostic robustness and reducing cross observer fluctuation (**Appleby & Basran, 2022**).

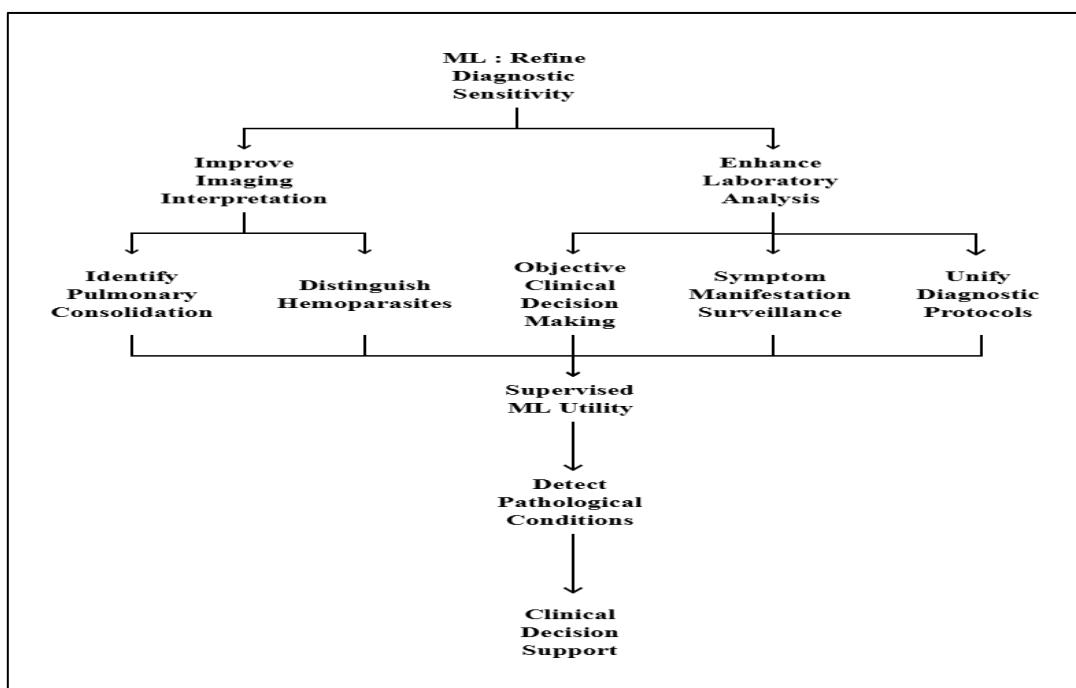


Figure 01: Schematic Illustrating Machine Learning Integration in Veterinary Diagnostics
adapted and illustrated by the author from **Appleby & Basran (2022)**.

I.1.1.4. Unsupervised Algorithms for Herd Health and Early Disease Detection

In addition, unsupervised ML techniques serve essential roles in herd health monitoring and species group medicine domains emphasized under the herd medicine "médecine de troupeau » (approach in Algerian veterinary training. These algorithms operate on unlabeled datasets to Detect Latent patterns, cohorts, or anomalies that may occur prior to clinical detection , we have k-means clustering is unsupervised ML algorithm that for example in subclinical mastitis within dairy herds group milk samples based on somatic cell count (SCC) data from bulk milk tanks. This allows the detection of subclinical mastitis in cows that do not yet show overt symptoms then classify herds into risk categories (low, moderate, high Risque) for early optimized intervention meanwhile monitoring the effectiveness of preventive strategies by tracking shifts between clusters over time, there is a valuable solution for identifying disease emergence in structured animal populations such as hierarchical modeling which is a statistical approach used to analyze data that is structured in nested or grouped formats, such as animals within herds, herds within farms, or farms within regions , allowing veterinary epidemiologists to identify early signs of cryptosporidiosis outbreaks in neonatal small ruminants by classifying data from farms, current time period, or age group.

This classification enable veterinarians to detect changes from baseline morbidity levels. If multiple flocks exhibit an unusual increase in gastrointestinal symptoms and oocyst presence across several time points from stool test, the model can flag a risk a probable cryptosporidiosis outbreak before clinical signs are widespread. Such function are invaluable in supporting disease surveillance and maintaining productive,once these clusters are formed, veterinarians can focus preventive actions on high-risk subgroups disease-resilient livestock systems whole avoiding economic lose (**Basran & Appleby, 2022**).

I.1.1.5. Diagnostic Modeling: Algorithm-Specific Applications

To achieve these outcomes the choice of algorithm is closely aligned with the nature of the data and the diagnostic or decision making objective. For example, Support Vector Machines (SVMs) are widely used for disease classification.

These models constructs a decision-separating surface within the feature space to differentiate between the categories that separates clinical cases into different categories based on input features. For instance, in a diagnostic scenario involving hematological markers

(leukocyte counts, erythrocyte indices), an SVM could be trained to distinguish between infectious anemia and immune-mediated hemolytic anemia in dogs.

The model learns which combinations of variables best distinguish one diagnosis from another, allowing for the most precise prediction in new cases , Random Forests, an ensemble learning technique, are highly useful when managing high dimensional, multi-variable data a common challenge in veterinary diagnostics. For example, when interpreting comprehensive biochemical profiles in equine colic cases, a Random Forest model can analyze multiple parameters (such as lactate, electrolyte levels, hematocrit) simultaneously to anticipate outcomes such as the need for surgical intervention.

The model uses multiple decision trees, each trained on a random subset of features, and aggregates their outputs for a reliable prediction , Neural Networks are the foundation of deep learning and excel in processing high dimensional imaging data. In veterinary radiology, convolutional neural networks (CNNs) a specialized type of neural network can analyze thoracic radiographs or abdominal ultrasound images to detect pathologies like cardiomegaly or hepatic masses.

These networks automatically learn which visual features (edges, textures, shapes) correlate with disease progress , significantly enhancing diagnostic efficiency, notably in resource restricted settings , Principal Component Analysis (PCA) is not a predictive model but a Reduction in variable complexity technique. It is especially valuable in summarizing complex clinical datasets, like in the case of histopathological analysis, PCA can reduce hundreds of measured cellular factors , such as nuclear size, staining intensity, and cytoplasmic ratio , into a smaller number of principal components that preserve most of the variety . These components can then be used to stratify tumor types or stages with high clarity and decrease computational load (resource utilization).Overall , these algorithms form the technological core of many veterinary AI applications, from digital pathology and diagnostic imaging platforms to herd health surveillance systems. They support veterinarians in Automated Case Prioritization, enhance diagnostic precision, and facilitate real-time, data-driven decision-making a Paradigm-shifting in both individual animal care and populationlevel management. (**Szlosek et al., 2024**)

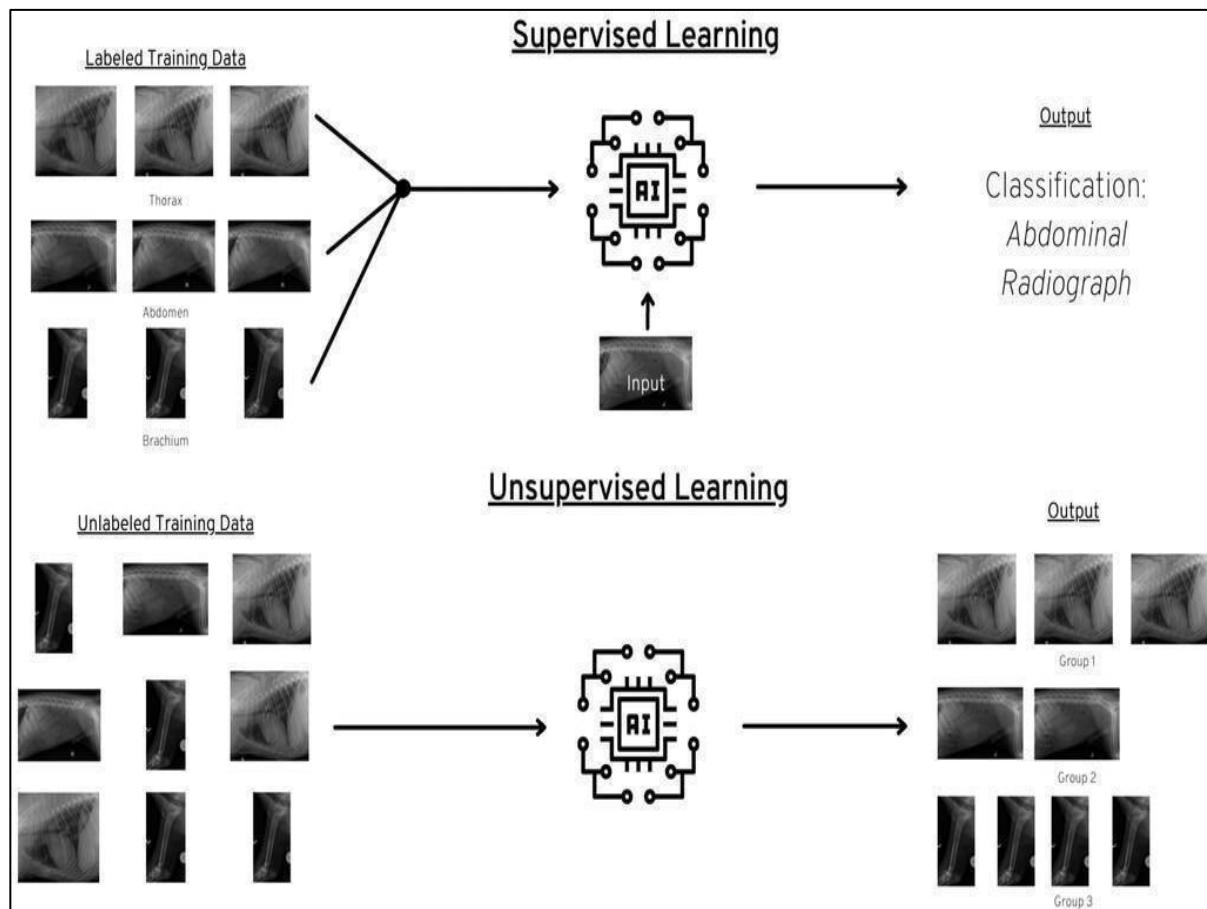


Figure 02 : This schematic demonstrates supervised (top) and unsupervised (bottom) learning approaches in veterinary radiology. In supervised learning, labeled radiographic images are used to train an AI model to classify new inputs. In contrast, unsupervised learning groups unlabeled images based on shared features. Adapted from **Appleby & Basran (2022)**.

I.1.2. Deep Learning (DL)

I.1.2.1. Principles of Deep Learning and CNNs in Veterinary Imaging

DL an Advanced subfield of ML, is characterized by its use of artificial neural networks (ANNs) composed of multiple Successive processing units that simulate the inspired by processing structure of the biological nervous system.

These multilayered networks enable DL algorithms to autonomously extract complex patterns from multivariate data of biomedical data, thereby supporting advanced decision making without predefined rules.

Algorithmic such as Convolutional Neural Networks (CNNs) represent the principal deep learning architecture applied to diagnostic imaging. CNNs are specifically engineered to process and interpret spatial hierarchies in two-dimensional (2D) (standard X-rays) and three-

dimensional (3D) formats (CT scans), such as thoracic radiographs, ultrasonography scans, or computed tomography (CT) datasets. (**Cheng et al ., 2021**)

I.1.2.2. Application of CNNs in Small Animal Radiology and Internal Medicine

These networks utilize successive convolutional filters to identify low- to high level patterns ranging from anatomical borders to pathological indicators , mimicking the staged analysis performed by a veterinary radiologist , in small animal internal medicine, CNNs trained on annotated thoracic radiographs have demonstrated proficiency in detecting: Alveolar and interstitial opacities indicative of lobar pneumonia Pleural effusion and bronchial wall thickening, common in chronic bronchitis and neoplastic infiltration .

These systems are trained using large, labeled imaging datasets where each image is pre-categorized by experts according to diagnostic findings. Through repetitive optimization using gradient-based learning of weight matrices across layers, CNNs learn to associate radiographic features with specific pathological conditions, improving accuracy of the outcome over time (**Deekonda , 2024**).

I.1.2.3. Radiographic Interpretation and Enhancing Rural Practice

Importantly, this eliminates the need for the manual steps, these networks are designed to automatically scan and learn which parts of an image are most important (regions of interest, or ROIs : lesion , tumor mass , area of increased radiodensity , cardiac silhouette) for identifying a particular disease or abnormality.

This algorithm proves particularly effective for veterinarians who have limited access to board certified radiologists or high case throughput CNNs facilitate automated triage and image interpretation, ensuring timely interventions. This is particularly critical in emergency and critical care units, where diagnostic latency can affect prognosis. (**Appleby & Basran, 2022**) as demonstrated in the **figure 03** .

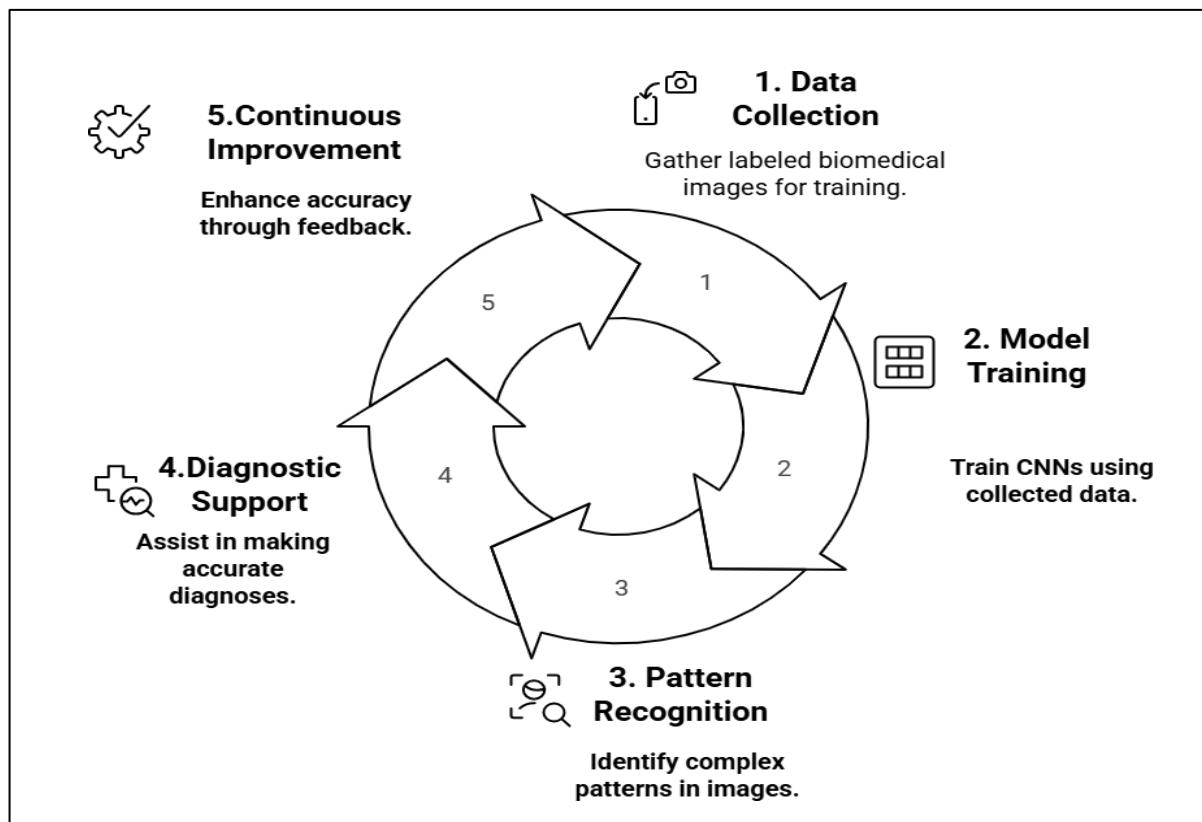


Figure 03: Illustration of deep learning applications in veterinary diagnostic imaging, highlighting pattern recognition, image classification, and automated interpretation (Appleby & Basran, 2022).

Moreover, DL tools help standardize interpretive accuracy across practitioners, supporting uniform clinical decision-making regardless of geographic disparities in veterinary infrastructure, a point where it is relevant in Algerian rural wilayas or field practice scenarios. By replicating the diagnostic reasoning processes characteristic of domain experts, deep learning through CNNs transforms veterinary imaging into a digitally enhanced diagnostic discipline. These systems improve efficiency in routine and emergency care but also solidify educational outcomes for veterinary students by enabling AI-driven visual diagnostics. As highlighted by Appleby and Basran (2022), DL does not replace clinical expertise; contrary, it strengthens it through evidence-based image analysis.

I.1.3. Natural Language Processing (NLP)

I.1.3.1. Structuring the Unstructured: From Clinical Narratives to Computable Data

NLP is a subfield of AI that addresses on enabling computational systems to interpret, process, and generate human language. In veterinary settings, much of the data generated, such as

anamnestic reports, clinical examinations, operative summaries, and treatment protocols exists in unstructured textual form. Often these unstructured datasets are rich in clinical relevance but are typically underutilized due to their incompatibility with traditional algorithmic processing methods , NLP enable us to convert those documents into structured, searchable, and analyzable data formats, enabling more efficient retrieval, case indexing, and diagnostic decision support (**Hossain et al., 2023**).

I.1.3.2. Linguistic Processing Steps in Veterinary NLP

The system primarily work based on functions through a series of linguistic and computational steps that transform unstructured veterinary text into structured, analyzable data. The process begins with tokenization, where clinical texts data , such as anamnesis or examination notes , are broken down into individual units like words or sentences, allowing the system to handle and deduce language efficiently. Next, Named Entity Recognition (NER) recognize and extracts specific clinical elements, including anatomical structures "renal cortex", physiological conditions tachycardia", or disease names "canine parvovirus". Following this, Part of Speech Labeling assigns grammatical categories (such as noun, verb, adjective) to each word, enabling the system to understand how terms function in data information . Finally, Decoding linguistic input into formal representations connects these identified entities to formalized veterinary ontologies such as SNOMED-CT Veterinary Extension, facilitating uniform clinical coding, interoperability, and precise data retrieval (**Zhang et al., 2023**).

I.1.3.3. Clinical Applications

Through these layered processes, NLP enables automated case indexing, diagnostic support, and epidemiological surveillance by converting free text records into structured formats suitable for computational analysis. For veterinary practices it can be used in Case Retrieval: by facilitating the rapid extraction of historical patient records that align with specific diagnostic criteria. For instance, querying all feline diagnosed with hypertrophic cardiomyopathy can be accomplished efficiently, supporting retrospective studies next reduce error By converting unstructured data such as handwritten notes or dictated clinical narratives into standardized digital formats, this automation helps diminish risks associated with misinterpretation and documentation errors also can help us with therapeutic monitoring by analyzing language patterns across patient records to detect signs of therapeutic failure, for example, repeated references to "lameness" in equine medical logs may indicate an inadequate

response to treatment, Facilitating the continuous evaluation of treatment protocols, while monitoring pharmacological usage to ensure compliance with best practices and prevent potential misuse (**Venkataraman et al., 2020**).

I.1.3.4. NLP for Epidemiological Surveillance and Zoonotic Outbreak Detection

Furthermore, its most promising application lies in the domain of epidemiological intelligence. The dynamic incorporation of NLP technologies into disease surveillance systems improving the automated recognition of terminology indicative of zoonotic or reportable conditions , such as references to "suspected leptospirosis." This capability significantly contributes to the timelier identification of potential outbreaks and strengthens biosecurity measures through more effective and strategic resource deployment (**Aslam et al., 2023**).

I.1.3.5. Real-Time Deployment in High-Volume Veterinary Settings

In high volume veterinary hospitals managing hundreds of clinical cases monthly , NLP systems play a transitional role in extracting and analyzing unstructured data from clinician notes. For instance, during a suspected outbreak of canine distemper virus, an NLP algorithm can autonomously scan free-text medical records to identify keywords such as “ocular discharge,” “myoclonus,” or “seizure,” subsequently flagging relevant cases for review and prioritizing them for laboratory validation focusing on those exhibiting the most indicative markers of high priority pathological conditions.

This real time data summarize not only facilitates early outbreak detection but also improve diagnostic precision and supports timely epidemiological responses. By automating the identification of clinically significant details within narrative records, NLP contributes to streamlined clinical workflows and fosters objective evidence based decision making.

In the Algerian veterinary context where field based reporting and structured medical documentation are integral to both herd health and companion animal practice NLP stands out as a scalable solution that strengthens diagnostic efficiency and reinforces the continuity of care across diverse clinical environments, as Basran and **Appleby (2022)** affirm, NLP strengthens veterinary medicine by integrating textual intelligence bridging the gap between clinical narrative and cognitive logic.

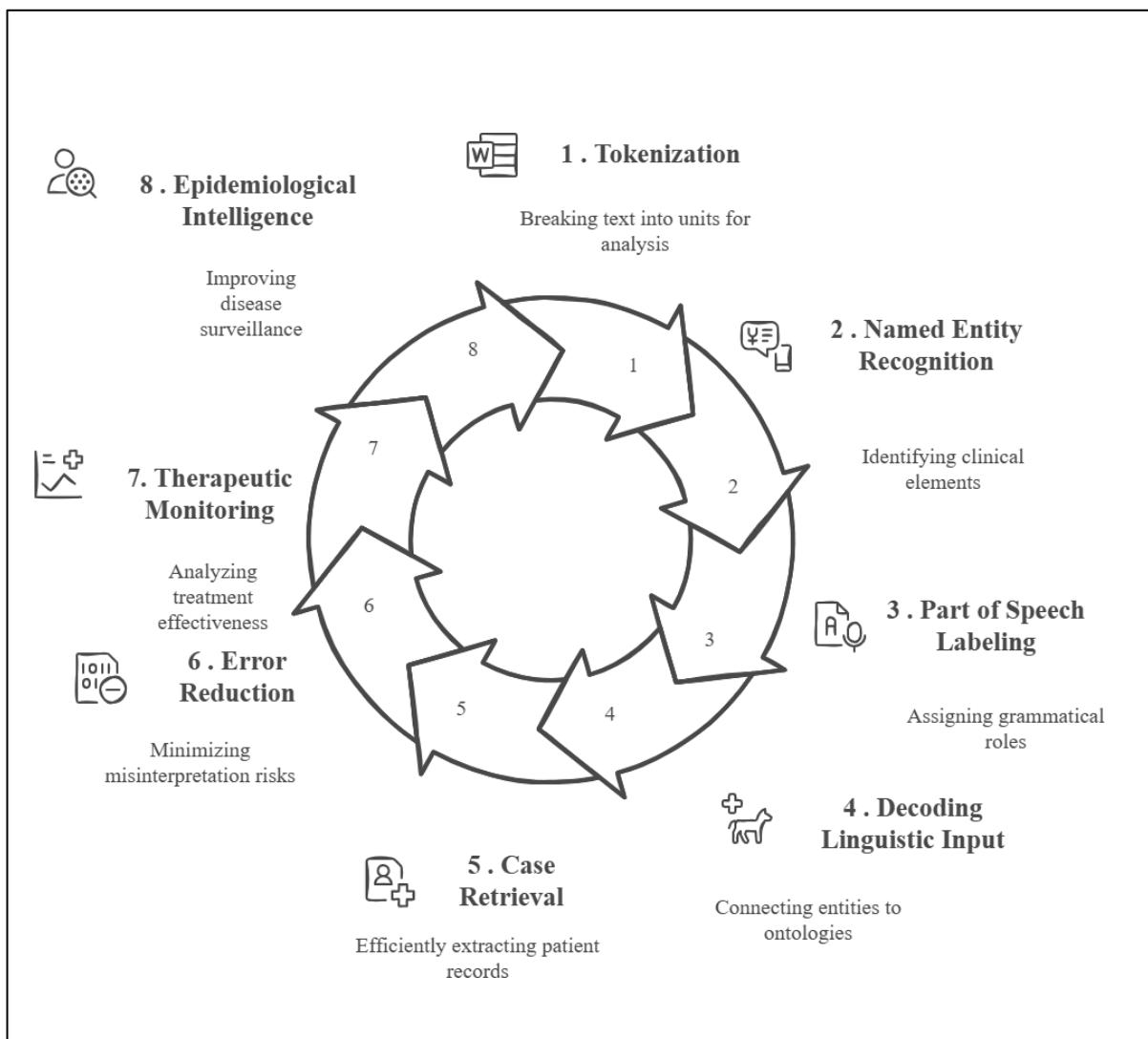


Figure04 : A schematic representation of the NLP workflow in veterinary contexts, illustrating data collection, processing, and clinical application. Adapted from [Appleby \(2022\)](#).

I.2. Clinical Decision Support Tools

I.2.1. Functional Scope and Clinical Relevance of CDSTs

Clinical Decision Support Tools (CDSTs) represent a critical interface between veterinary expertise and AI, facilitating timely data informed guidance that improve diagnostic outcomes, optimizes therapeutic protocols, and synchronize in clinical decision making. Including in algorithmic reasoning, these systems operate by diffusing structured and unstructured patient data including electronic medical records (EMRs), such as canine cardiac evaluation (Rule-Based Engine / Decision Tree) done in the case of a middle aged Labrador Retriever presented with exercise intolerance and a subtle systolic murmur, that include auscultation examination data and echocardiographic measurements (such as left atrial

enlargement and fractional shortening) were entered into the EMR. The CDST analyzed these structured data and cross referenced them with cardiomyopathy protocols (**Lee et al., 2025**).

I.2.1.1. Integrated Decision-Making in Companion Animal Care

It proposed dilated cardiomyopathy (DCM) as the leading differential diagnosis, recommended further diagnostic monitoring with a Holter ECG , next the Feline Chronic Kidney Disease Tracking (Data Integration) a senior domestic shorthair cat with stable Stage 2 CKD (Supervised Learning Model + NLP) experienced decreased appetite and an increase in serum creatinine concentrations. The CDST summarized laboratory results (elevated BUN, creatinine, low urine specific gravity) with free text clinical notes such as “recent vomiting” and “reduced food intake.” Based on these information , the system Designated probable progression to IRIS (International Renal Interest Society) Stage 3, advised monitoring for metabolic acidosis, and recommended dietary adjustments along with subcutaneous fluid therapy .(**Henry et al., 2024**)

I.2.1.2. CDSTs in Herd-Level Surveillance and Population Medicine

In the case of Ruminant Disease Surveillance (NLP + Unsupervised Learning / Data Mining) In a mixed animal practice, an increased incidence of neonatal lamb diarrhea was recorded in the EMR. The CDST integrated geotemporal case data with vet notes referencing clinical signs like “lethargy,” “scours,” and “poor colostrum intake.” It generated an alert for a potential cryptosporidiosis outbreak, advised herd-level fecal screening, and recommended biosecurity measures aligned with OIE guidelines (**Akinsulie et al., 2024**).

I.2.1.3. Technical Architecture and AI Integration in CDSTs

From a technical perspective, CDSTs operate through the integration of ML, NLP, and Predefined rule based engines to promote data informed clinical reasoning. These systems analyze structured clinical inputs such as patient signalment, physical exam findings, and laboratory results , alongside unstructured data from clinical narratives or historical case records. The technical axis function of a CDST is not just data storage, but intelligent interpretation: identifying clinically meaningful patterns, classifying differential diagnoses, and recommending targeted interventions in current time. For instance, **Fox et al. (2021)** demonstrated the implementation of an AI-augmented CDST in the management of canine idiopathic epilepsy. In this model, the system summarized a range of neurologic parameters

such as episodes of generalized seizures, behavioral changes , and proprioceptive deficits , to signal idiopathic epilepsy as a primary differential. It then proposed personalized management recommendations. By aligning its suggestions with published treatment protocols and longitudinal patient data, the system effectively functioned as a digital extension of veterinary clinical judgment, rather than a replacement.

I.2.1.4. Advanced Functions: Medication Safety, Prognostics, and Alerts

Such systems are particularly valuable in streamlining diagnostic approaches for multifactorial pathologies, reducing clinician fatigue, and ensuring consistent adherence to best performance in evidence based clinical practice. Furthermore, as veterinary CDSTs mature, their utility expands into sophisticated tasks such as medication interaction checks, outcome prediction modeling, and Dynamic alert mechanisms responsive to case specific parameters during clinical data integration (**Fox et al., 2021**).

I.2.1.5. Interoperability and Ethical Considerations in Veterinary CDSTs

A critical factor in the implementation of CDSTs into clinical practice is the system's ability to function compatibly alongside prior frameworks such as Veterinary Practice Management Systems (VPMS). Interoperability facilitates seamless data exchange between AI based diagnostic frameworks and EHRs, promoting coherent system integration ,diagnostic databases, and patient history logs, enabling a smooth exchange between structured and unstructured data. This technical alignment is vital for real-time decision support and for decreasing administrative tasks that could otherwise hinder clinical efficiency. Moreover, architectural transparency is central to the ethical deployment of CDSTs. Akinsulie et al. (2024) emphasize the necessity of employing "white-box" models systems in which the decision making logic is understandable, auditable, and traceable by partitionner.

This stands in oppsite to "black-box" AI systems, which, while potentially powerful, obscure their internal reasoning processes, thereby restricting the clinician's ability to check or contest system created recommendations. In veterinary field , where treatment outcomes primarley affect both animal welfare and public health (particularly in zoonotic emergence or herd level conditions), assuring such transparency ensures that practitioners can critically assess and validate AI-generated suggestions (**Akinsulie et al., 2024; Fox et al., 2021**).

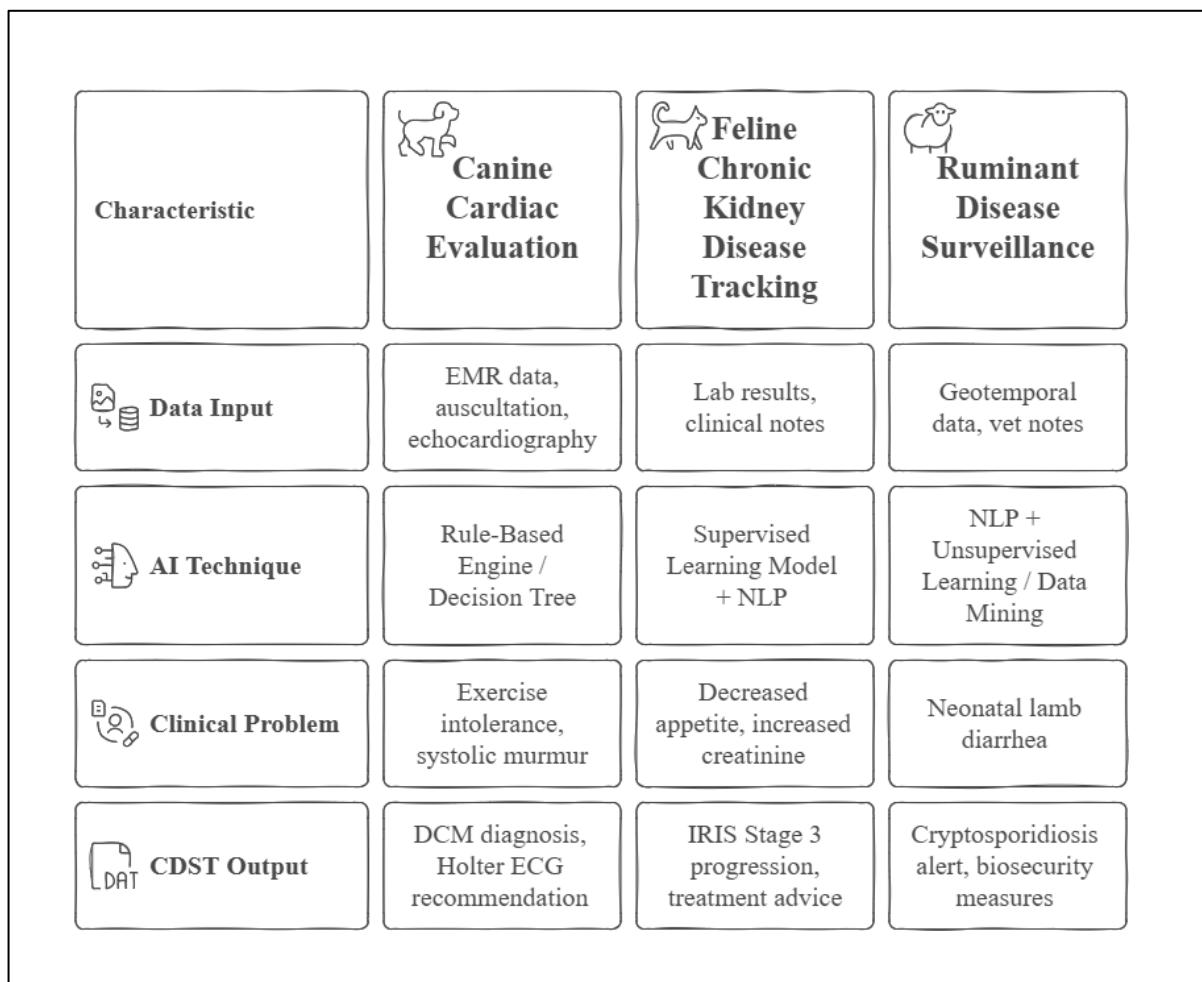


Figure05 : Schematic representation of Clinical Decision Support Tool (CDST) integration with Electronic Medical Records (EMR) for disease prediction and management, including use cases such as Dilated Cardiomyopathy (DCM). Adapted and illustrated by the author from **Akinsulie et al. (2024)** and **Fox et al. (2021)**.

I.2.2. Imaging Techniques and Data Processing

I.2.2.1. AI-Driven Image Quality Assessment and Optimization

To explore the internal operational and significance of AI in clinical relevance diagnostic imaging, it is imperative to analyze the procedural logic of how AI systems operate beyond the diagnostic they produce . Unlike the traditional software tools that rely on pre programmed logic, AI particularly through ML and DL , employs data centric models that adapt dynamically to new input patterns. This adaptability is particularly valuable in the context of veterinary imaging, where interspecies anatomical and pathological diversity between species adds complexity to diagnostic interpretation. DL architectures often employ CNNs, which are

designed to independently analyze unprocessed imaging inputs through successive layers of feature extraction.

In veterinary imaging, their distinct advantage lies in their capacity to localize and discriminate subtle variations in radiographic presentations across species without the necessity for predefined manual feature engineering. where a CNN-based algorithm was developed to automatically evaluate the quality of canine thoracic radiographs. This system interprets processes digital radiographic inputs in real time, evaluating parameters such as contrast, anatomical visibility, and positioning, to determine whether an image meets diagnostic criteria. Once substandard images are detected, the system delivers to clinician's immediate feedback, allowing for adjustments repositioning or exposure settings , thus maintaining radiological standards while contributing to reducing unnecessary radiation exposure for both patient and operator optimizing workflow effectively . This automated cycle control loop illustrates how ML links the gap between image acquisition and interpretation (**Krupiński et al., 2023**).

I.2.2.2. Diagnostic Pattern Recognition in Veterinary Imaging

Further broadening the utility of AI in veterinary radiology, **Burti et al. (2024)** Critically examine both the strengths and constraints of algorithm supported diagnostic performance. Their study emphasize that while CNNs are adept at recognizing subtle pulmonary or orthopedic pathologies, especially in canine and feline thoracic imaging, the interpretive precision of these models is strongly influenced by the heterogeneity and integrity of dataset while training the model.

I.2.2.3. Algorithmic Classification Techniques in Sonography and Cardiology

Parallel to CNNs, other algorithmic methodologies bolster the broader diagnostic ecosystem. Support Vector Machines (SVMs) are applied in classifying sonographic findings (ultrasonographic patterns), notably when distinguishing neoplastic from non-neoplastic lesions in abdominal organs. SVMs achieve this by constructing hyperplanes in high dimensional space, informed by structured parameters like lesion shape, echotexture, and vascularization indices. Likewise random Forests, by contrast, are a combination of learning methods particularly suitable for integrating heterogeneous clinical parameters. In veterinary cardiology, these models can synthesize variables such as echocardiographic chamber measurements, NT-proBNP concentrations, and patient demographic data (breed or age) to predict congestive heart failure with high specificity. This resilience arises from the model's internal averaging

mechanism, which counters the risk of overfitting and increase reliability across diverse patient cohorts (**Burti et al., 2024**).

I.2.2.4. Dimensionality Reduction and Workflow Integration in Pathology and PACS

Moreover, Principal Component Analysis (PCA) serves as an effective method for reducing the dimensional complexity of large scale morphological datasets. Within veterinary pathology, PCA improve cytological or histopathological profiles by identifying diagnostically dominant features such as granularity, nuclear size, or mitotic index which are critical in identifying mast cell tumors, lymphoma subtypes, or metastatic behavior in biopsy samples. Noteworthy, these algorithmic systems are now being incorporated into Picture Archiving and Communication Systems (PACS). Here, AI models not only automate image sorting and annotation but also prioritize cases according on clinical urgency an essential feature in academic or referral hospitals institutions with shortage of trained radiological specialists (**Lee et al., 2024**).

Characteristic	CNN	SVM	Random Forests	PCA
Application	Analyzing unprocessed images	Classifying sonographic findings	Integrating heterogeneous clinical parameters	Reducing dimensional complexity
Data Input	Radiographic presentations across species	Lesion shape, echotexture, vascularization	Echocardiographic measurements, NT-proBNP, demographics	Cytological or histopathological profiles
Example Use	Evaluating canine thoracic radiograph quality	Distinguishing neoplastic from non-neoplastic lesions	Predicting congestive heart failure in veterinary cardiology	Improving cytological or histopathological profiles

Figure 06 : Illustration of AI applications such as Convolutional Neural Networks (CNN) and Principal Component Analysis (PCA) in veterinary imaging, including biomarkers like NT-proBNP (N-terminal pro B-type Natriuretic Peptide). Adapted and illustrated by the author from **Burti et al. (2024)**.

Chapiter II: AI in veterinary diagnostics

II.1. Automated Analysis of Constulation Data and Finding

II.1.1. Deep Learning Models for Structured Clinical Data Interpretation

As **Miotto et al. (2018)** explain, DL models, especially those structured as multilayered neural networks, are uniquely suited to manage big scale data common in healthcare, such as hematological indices, biochemical markers, and microbiological culture results. These models operate by integrating structured datasets, complete blood count (CBC) parameters, serum creatinine levels, urinalysis reports and learning latent patterns that correlate with precise pathological states. For instance, a recurrent elevation in neutrophils, combined with hyperglobulinemia, may activate a trained algorithm to recomend differential diagnoses such as chronic bacterial infection or immune mediated inflammation, prompting earlier clinical intervention.

within veterinary practice , such automation reduces reliance on manual interpretation, particularly for early detection of deviations from species specific physiological studies . This is especially advantageous in large dataset clinical settings or rural field operations where veterinary labor is constrained. Over time, with the assimilation of additional subject specific features , these models in a recurrent manner refine their predictive accuracy a concept known as model retraining or reinforcement learning thereby supporting with validated findings care (**Akbarein et al., 2025**).

II.1.2. Natural Language Processing in Veterinary Record Mining

Furthermore, as emphasized by **Hur et al. (2020)**, NLP is essential in retrieving clinically relevant information from unstructured textual records such as anamnesis notes, SOAP (Subjective, Objective, Assessment, Plan reports, or post-operative summaries. In their study they analyzed over 4.4 million veterinary consultations records from Australia (2013–2017). Their model identified 595,089 antimicrobial prescriptions, equating to 145/1,000 canine and 108/1,000 feline consultations receiving antibiotics,from these data NLP enabled immediate recognition of antimicrobial prescribing evolving profiles, contributing to finding from 1000 consultation 38 canine and from 1000 consultation 47 feline visits involved high importance antimicrobials , raising stewardship concerns.

The common drugs include cefovecin in cats and amoxicillin-clavulanate in dogs, while polymyxin B was the prevalent topical agent frameworks in accordance with the One Health approach.

II.1.3. Predictive Trend Analysis for Chronic Disease Management

At the implementation level, a clinician utilizing an data centric automated solution might incorporate serial biochemical information for a canine patient with renal compromise serum creatinine, BUN, urine specific gravity and receive a predictive tendencies analysis recomended progression toward chronic kidney disease. Such foresight, when aligned with clinical observations and ultrasonographic findings, strengthen the diagnostic hypothesis and enhance treatment planning as demonstrated in the **figure 07** below (Renard et al., 2021).

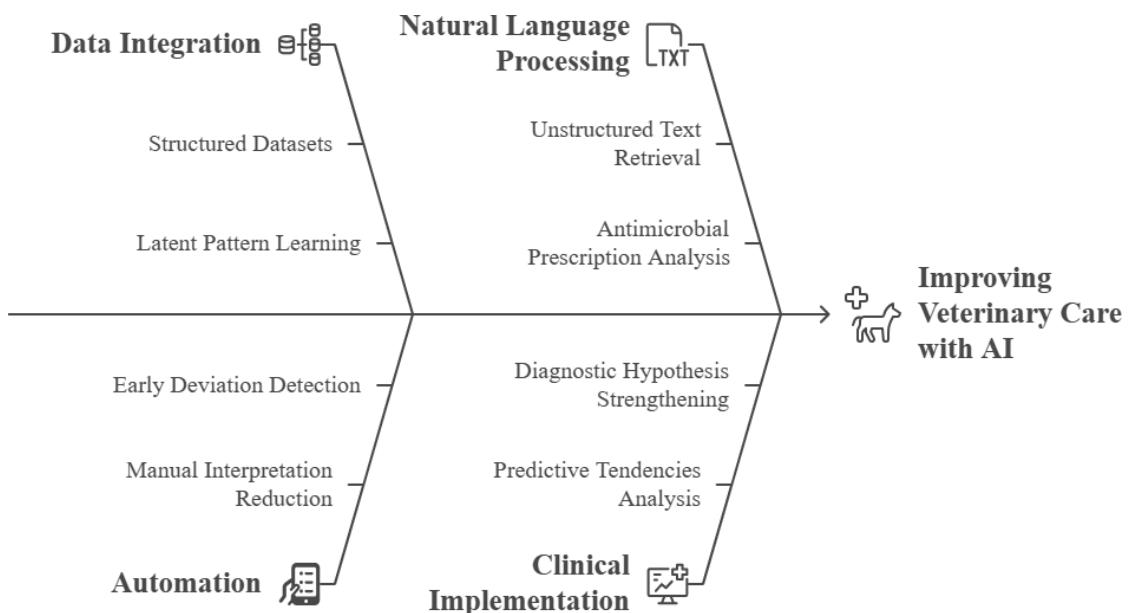


Figure 07 : illustration show how Enhancing Veterinary care with AI tools improving diagnostic accuracy, treatment personalization, and health monitoring in veterinary practice. Adapted and illustrated by the author from Akbarein et al. (2025) and Miotto et al. (2018).

II.2. Artificial Intelligence in Predictive Diagnostics

II.2.1. Transitioning from Reactive to Predictive Veterinary Medicine

From reactive to predictive diagnostics. This evolution aligns closely with the principles of preventive health management and precision veterinary medicine, especially in the context of emerging global challenges such as parasite control. Within biological and veterinary

standpoint, predictive diagnostic systems rely on the integrating and processing of high-dimensional data inputs, including clinical history, physiological biomarkers, laboratory results (hematology and biochemistry omics), and, increasingly, digital imaging and parasitological evidence. These datasets serve as the foundation for training ML models that can detect pathophysiological patterns preceding overt clinical disease (**Pijnacker et al., 2022**).

II.2.2. Deep Learning Applications in Veterinary Parasitology

An exemplary application of DL in veterinary parasitology is demonstrated by the Vetscan Imagyst® platform, validated by **Steuer et al. (2024)**, which integrates a convolutional neural network (CNN) specifically trained for high resolution image recognition in fecal diagnostics.

In this study, the system autonomously analysed equine fecal samples to detect and differentiate helminth ova particularly strongyles and *Parascaris spp* with a sensitivity ranging from 88.9% to 100% and specificity between 91.4% and 99.9%, depending on egg concentration levels. This level of diagnostic accuracy was shown to rival that of experienced parasitologists, particularly in samples with low egg counts (5–200 EPG), where the coefficient of variation was markedly reduced compared to manual McMaster techniques.

II.2.3. Technical Workflow of CNN-Based Diagnostic Platforms

Functionally, the CNN analyzes digitized stained fecal specimens by retrieving and learning morphological patterns such as egg shape, shell thickness, and internal granularity. The model segments the image, isolates individual ova, and classifies them based on learned phenotypic features without the need for manual pre-processing. This allows 2024, mediate, reproducible quantification of parasite load, supporting data centered decisions in parasite control (**Xu et al., 2024**).

II.2.4. Clinical and Epidemiological Advantages in Field Settings

From a veterinary and One Health perspective, such platforms offer several clinical advantages. First, they facilitate individualized targeted endoparasite control interventions by accurately classifying animals based on parasite burden, thereby decreasing unnecessary anthelmintic administration and slowing resistance progression.

Second, by integrating diagnostic automation into routine herd surveillance, they enable early intervention in clinically predisposed populations, contributing to biosecurity and animal welfare. Third, when deployed in resource constrained or high throughput settings, they democratize access to parasitological expertise by standardizing diagnostic output across users. Thus, the Vetscan Imagyst® system exemplifies how AI-powered tools can bridge the gap between laboratory precision and field applicability, redefining parasitic diagnostics as both a clinical and epidemiological instrument (**Steuer et al., 2024**).

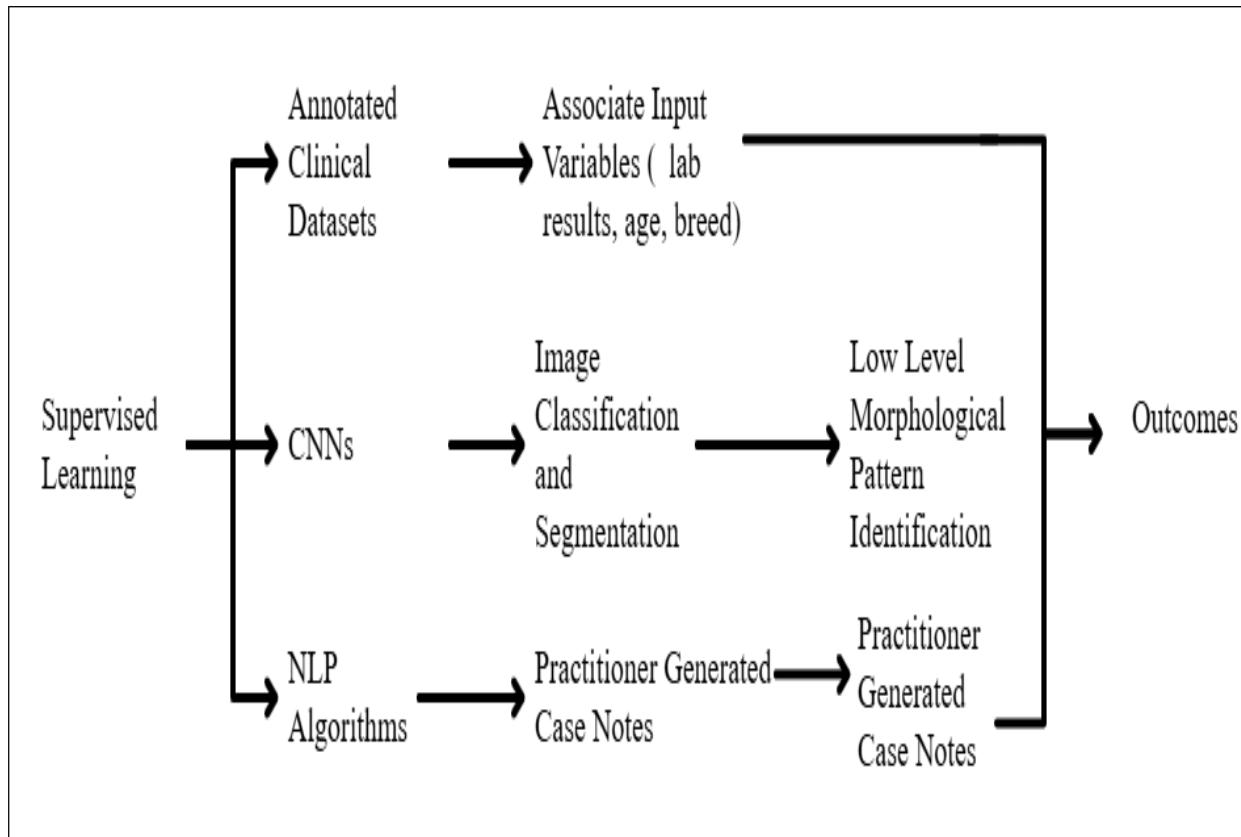


Figure 08: Application of predictive modeling to enhance diagnostic accuracy and decision making in veterinary systems. *Adapted and illustrated by the author from (Steuer et al., 2024).*

CHAPTER III: CONNECTED DEVICES AND ANIMAL MONITORING

III.1. Mechanisms and Applications of Wearable Technologies

III.1.1. Sensor Types and Operating Principles in Veterinary Wearables

The advancement of wearable technologies in veterinary medicine, as articulated by (Zhao et al. 2025), marks a significant evolution in the clinical monitoring of animal health. These connected, devices integrated with biosensing components provide continuous, non-invasive surveillance of physiological and behavioral biomarkers, improving a transition from episodic clinical evaluations to Instantaneous, longitudinal health management. From the perspective of veterinary informatics and applied AI, this represents a foundational shift toward early intervention oriented, precision-based medicine in both companion animal and large animal husbandry system. Wearable systems settings collect biometric and ethological data including heart rate variability, respiratory rate, core body temperature, ambient activity levels, Locomotor biomechanics, rumination time, and even feeding behaviors. These data are acquired through multimodal sensor technologies have become instrumental in Current practices in digital veterinary health surveillance, each offering unique Observations into animal physiology and behavior.

For example, **Accelerometers**, which are tri-axial sensors capable of detecting motion along the X, Y, and Z axes, allow for detailed classification of behaviors such as walking, resting, or limping. These are particularly valuable in monitoring post operative recovery and detecting locomotor abnormalities. **Gyroscopes** likewise are Kinematic sensors that measure angular velocity how the animal's body rotational movement along the transverse plane, pitch, and roll axes. (Unlike accelerometers, which track linear movement, gyroscopes capture rotational motion, aiding in the assessment of balance, orientation, and gait coordination.) they are Incorporated in wearable devices (collar or limb sensors) and often paired with accelerometers to generate a comprehensive biomechanical profile. **Thermistors** in addition, embedded in wearable devices such as ear tags or collars, are temperature sensitive resistors that detect Slight variations in surface body temperature, enabling early identification of febrile conditions such as mastitis or heat stress in livestock, often before clinical signs manifest. **Photoplethysmography (PPG)** which employs light based technology to calculate changes in blood volume, allowing for Sustained monitoring of heart rate and vascular perfusion.

This method is particularly useful in neonatal or small species where traditional auscultation proves challenging. **Infrared Thermography (IRT)**, is a non-contact imaging technique, captures and maps thermal radiation emitted from the body to detect areas of inflammation, stress induced hyperthermia, or vascular anomalies, making it well suited for use in herd level diagnostics and in animals where physical handling is restricted, integrated into collars, harnesses, or ear tag devices. The raw signals are Transformed into machine readable form and transmitted wirelessly via protocols such as Bluetooth (for companion animals), Wi-Fi (for high bandwidth clinical data), or LPWAN (for long range livestock monitoring) to cloud based platforms. There, AI algorithms like CNNs or RNNs process the data in real time to detect health anomalies, stratify behaviors, and support early disease detection. Owing to the continuous and voluminous nature of sensor derived physiological data, accurate interpretation necessitates the deployment of algorithmic processing mechanisms capable of immediate trend extraction and anomaly detection. ML algorithms particularly supervised models such as random forests and SVMs are used to classify behavioral states and detect physiological anomalies (**Chambers et al., 2021**).

III.1.2. Behavioral and Physiological Monitoring Using Wearable Sensors

For instance, ML can differentiate between normal movement patterns and early lameness based on changes in stride frequency and symmetry **in equine patients**. A striking example is provided by **Chambers et al. (2021)**, who utilized DL specifically, CNNs to classify canine behavior using a single collar-mounted accelerometer. Their model, trained on annotated datasets of canine activities (walking resting, scratching, shaking), achieved high accuracy in recognizing behavior in Field based practice settings. This exemplifies how DL can decode subtle kinetic patterns when paired with wearable accelerometers (motion detector), can accurately classify complex canine behaviors (scratching, licking, resting) by analyzing subtle kinetic data.

These DL algorithms autonomously convert raw motion patterns into structured, interpretable outputs, enabling real-time, automated ethological assessments both in clinical practice and home environments. This technology enhances welfare monitoring and supports early assessments both clinical and at-home settings. Within the framework of clinical veterinary practice, such technologies demonstrate substantial utility in domains of medical management, notably in the surveillance of post-surgical recovery during inpatient care by

continuous tracking of body temperature and activity helps detect early signs of infection, pain, or surgical complications in dogs and cats.

III.1.3. Applications in Reproduction, Welfare, and Stress Detection

Likewise Reproductive management in ruminants: Wearables monitor rumination, mounting behavior, and changes in core temperature to detect estrus and optimize insemination timing, improving herd fertility outcomes.

Also have shown a significant impact in Stress and welfare surveillance: In livestock, variations in locomotion patterns and heart rate are used as proxies for environmental or handling related stress, allowing for timely welfare interventions (**Horváth et al., 2021**)

III.1.4. Toward Predictive and Individualized Veterinary Care

The longitudinal nature of data captured enables veterinarians to Establish individualized baselines for each animal, a critical step in phenotype driven predictive modeling (that uses AI—especially supervised learning and deep neural networks, to identify patterns between observable clinical traits (like fever or gait changes) and disease risk. As explained by (**Qi et al. 2024; Miotto et al. 2018**). When integrated with EHRs, wearable data can fuel early warning systems that alert Anomalies to constructed physiological parameters facilitating preclinical detection of metabolic disorders, heat stress, or infectious processes.

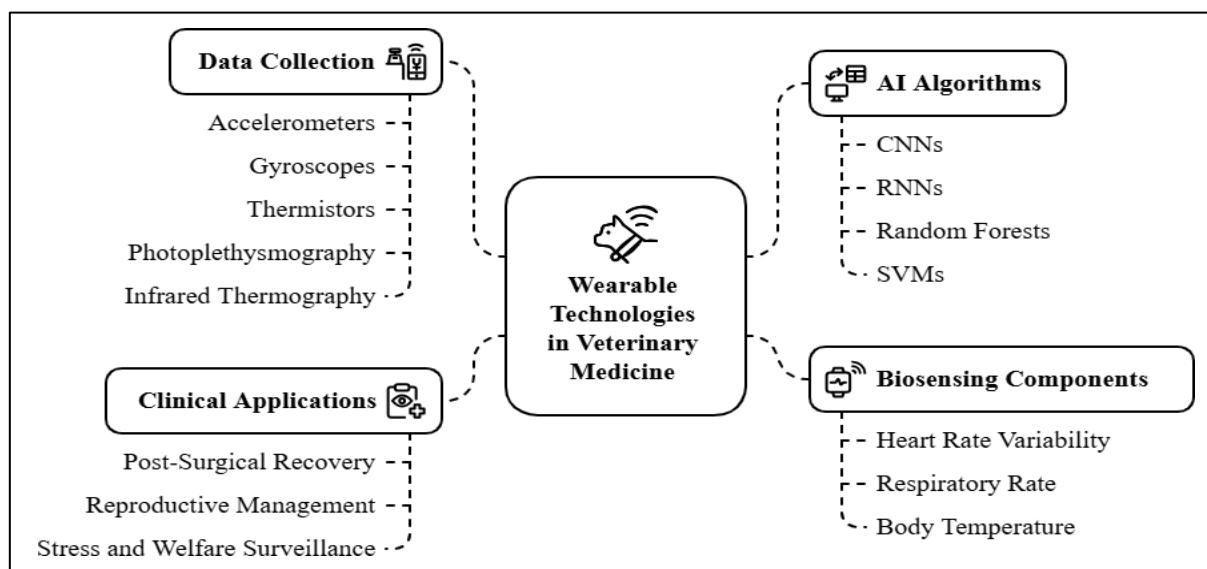


Figure 09: Wearable technologies in Veterinary medicine Illustrates the application of wearable devices for continuous physiological monitoring and health assessment in animals. *Adapted and illustrated by the author from Chambers et al. (2021), Qi et al. (2024), and Miotto et al. (2018).*

III.2. Monitoring of Behavior and Vital Signs

III.2.1. Wearable Sensors for Companion Animal Behavior Recognition

Sensor integrated monitoring systems are increasingly utilized to acquire both physiological (cardiac rhythm, temperature) and biomechanical (movement related) data in veterinary settings. Captured metrics may encompass locomotor frequency, rest activity cycles, nutritional intake patterns, hydration related behavior, and micro motor anomalies suggestive of neurologic dysfunction.

These streams data streams are obtained via devices such as triaxial accelerometers, inertial measurement units (IMUs), electrocardiographic modules, and thermal sensors, which are embedded in collars, harness systems, or subcutaneous instrumentation. Once acquired, the raw data is processed using ML and DL algorithms, which learn from labeled examples to automatically recognize patterns, behaviors, or anomalies relative to established baselines. For instance, (Chambers et al. 2021) illustrated that the inclusion of collar mounted accelerometers, when coupled with deep neural networks, could accurately stratify canine behaviors such as scratching, sniffing, and drinking. These fine-grained behavioral distinguishing it are often clinically relevance for example; iterative scratching might suspect atopic dermatitis or external parasitic ectoparasitic infestation thus enabling early therapeutic intervention.

III.2.2. AI-Based Monitoring in Laboratory Animal Models

In close laboratory environments, the use of AI-integrated sensor technologies has significantly increased the precision of behavioral analysis in small animal models. Notably, (Chen et al. 2022) illustrated the application of wireless IoT-based sensors in rodents to automatically stratify behavioral states such as resting, rearing, and ambulatory activity. Through the incorporation of advanced feature selection algorithms and imbalanced learning strategies, the system was able to precisely identify infrequent or subtle behaviors markers that may be indicative of early-stage neurological dysfunction, systemic stress responses.

III.2.3. Postoperative and Orthopedic Monitoring in Small Animals

In companion animal practice, wearable technologies notably those equipped with triaxial accelerometers have become important tools for postoperative monitoring and long term orthopedic management. Following procedures such as cranial cruciate ligament repair or

fracture stabilization, these devices enable clinicians to quantitatively assess limb use, gait asymmetry, and mobility patterns by detecting motion over the X, Y, and Z axes. In opposite to in clinic assessments, which are time restricted and frequently influenced by environmental stress, data collected in home settings provide a more ecologically valid measure of recovery. AI-driven behavior stratifying models apply these movement data to recognize subtle deviations from normal locomotion, such as reduced weight bearing or altered stride frequency parameters associated of complications like implant failure or delayed healing.

These data streams are transferred to cloud based platforms, allowing actual time remote evaluation and enabling clinicians to personalise analgesic regimens or adjust physiotherapy protocols rapidly. This system decreases reliance on subjective owner reports in anamnese when diagnoses and enhances the standardization and accuracy of follow up care. particularly, accelerometry has proven utility in the case of feline orthopedic recovery, where clinical signs such as lameness or discomfort are frequently understated. By providing objective metrics for ambulation and limb loading, wearables support proactive, personalised rehabilitation planning. In (Chambers et al., 2021).

III.2.4. Precision Livestock Farming and Reproductive Monitoring

Within the field of Precision Livestock Farming (PLF), the integration of AI-enabled wearable sensors such as smart collars and ear tag systems has transitioned herd health management by enabling ongoing, non-invasive monitoring of vital physiological and behavioral metrics. These technologies are particularly effective in the early detection of emerging conditions like in the case of subclinical mastitis an intramammary inflammatory condition without showing pronounced signs, thermistors embedded in smart collars or ear tags detect localized increases of cutaneous temperature of the mammary gland. When this is associated with decreased of rumination, often tracked via jaw movement sensors, AI models recognize these faint anomalies and issue alerts for complementary examination for diagnostics like somatic cell count testing.

This allows for timely intervention before productivity losses exacerbate. Similarly, initial phase lameness, often due to hoof or joint pathologies, is detected through accelerometers that monitor symmetry of limb motion, step frequency, and overall movement in three dimensions (X, Y, Z). Changes in stride regularity or prolonged inactivity intervals are interpreted by AI algorithms as subclinical indicators of locomotor dysfunction, often emerging

prior to the clinical manifestation of overt lameness, Estrus detection, an essential element of reproductive efficiency, is enhanced through multimodal sensor input. Accelerometers capture restlessness and mounting behavior, while thermistors detect rhythmic fluctuations in core temperature. Gyroscopes and caudally affixed pressure sensing devices further validate standing heat. These converged datasets allow the AI system to accurate estimation of the optimal insemination period and notify herd breeders or veterinarians accordingly (**James et al. 2024**). Moreover, the integration of these data streams supports widen welfare and productivity outcomes. Thermal stress indices extracted from continuous temperature and behavior monitoring inform environmental adjustments such as adjusting ventilation or hydration regimes , to alleviate heat stress. By synthesizing movement (accelerometers), temperature (thermistors), posture (gyroscopes), and mounting behavior, the AI system constructs a contextual health profile for each animal. Ultimately, these AI-enabled PLF (Precision Livestock Farming) systems enhance diagnostic accuracy, reproductive planning, and herd management. They allow for individualized care within Extensive free range production systems and represent a shift toward a data driven, prospective model that promotes both productivity and animal welfare (**James et al., 2024**).as it demonstrated in **figure 10**.

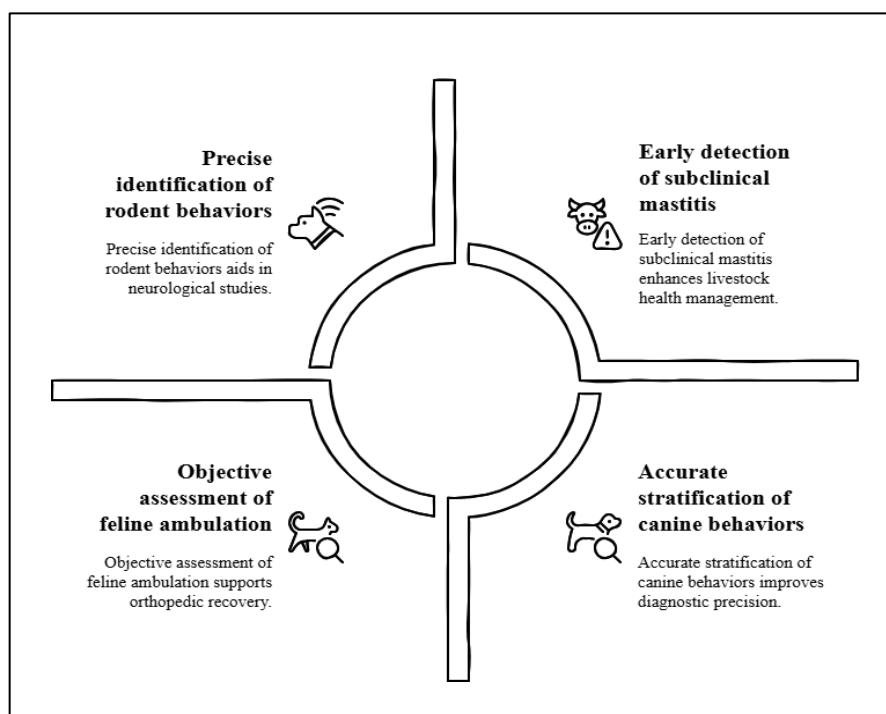


Figure 10 : Sensor applications in Veterinary and livestock management enabling real time monitoring and data driven decision making in animal health and husbandry. *Adapted by the author from (Chambers et al., 2021; James et al., 2024).*

III.3. Integration of AI in Animal Telemedicine

III.3.1. AI-Integrated Telemedicine Platforms in Veterinary Care

Within veterinary medicine, **AI-including telemedicine platforms** constitutes a significant development in remote clinical services, facilitating practitioners to mitigate animal health across a range of species and environments, especially in rural, high volume, or resource limited region (James et al., 2024; Ouyang, 2021).

III.3.2. Data Infrastructure: Interoperability and Cloud-Based Storage

The functional architecture of these platforms is initiated through the ongoing acquisition of biometric and behavioral features from wearable or environmental sensors such as rumination collars, thermistors, and accelerometers. Physiological and other behavioral parameters are wirelessly transmitted to cloud based databases, where they are harmonized using structured vocabularies like SNOMED-CT-Vet (Systematized Nomenclature of Medicine Clinical Terms for Veterinary Medicine). Thus promoting data interoperability across clinics, technologies, and geographic regions. (Ouyang, 2021) . Once the data are acquired, ML algorithms embedded within the system perform real time analysis by comparing individual animal metrics to herd level baselines and historical tendencies .

III.3.3. Predictive Surveillance and Spatial Risk Modeling

In addition, these platforms integrate geo tagged clinical records and environmental sensor data into veterinary telemedicine platforms represents a significant advancement in disease surveillance and outbreak forecasting. These systems not only track animal specific physiological and behavioral parameters but also associate them within spatial and temporal resolved and environmental frameworks, allowing for the prediction of localized disease risks. For example, in the population concentration in urban animal shelters, where airborne pathogens disseminate rapidly, platforms equipped with GPS tagged data and instantaneous environmental monitoring such as humidity, ambient temperature, or ammonia density can be used to model the risk of Canine Infectious Respiratory Disease Complex (CIRDC). CIRDC is a multifactorial syndrome involving pathogens like *Bordetella bronchiseptica*, *canine parainfluenza virus*, and *canine adenovirus*, which are highly sensitive to air quality, ventilation, and crowding. By applying ML algorithms to converged inputs, a spike in coughing frequency from EMRs, increasing ammonia levels detected by ambient sensors, and high

animal turnover in a geo specific shelter, the system can declare a potential CIRDC outbreak *before* clinical cases rise significantly (Bhowmik, 2021) .

III.3.4. One Health Integration and Public Health Implications

These predictive foresight can then activate biosecurity alerts, guide ventilation management, and Steer vaccination or isolation protocols, Limiting pathogen dissemination. This multimodal, Prognostic surveillance model manifests the One Health approach, linking animal health data with environmental and epidemiological information relevant to public health. It facilitates Immediate decision support not only for veterinarians but also for public health authorities, promoting harmonized interventions to emerging zoonotic threats (Ouyang, 2021 ; James et al., 2024).

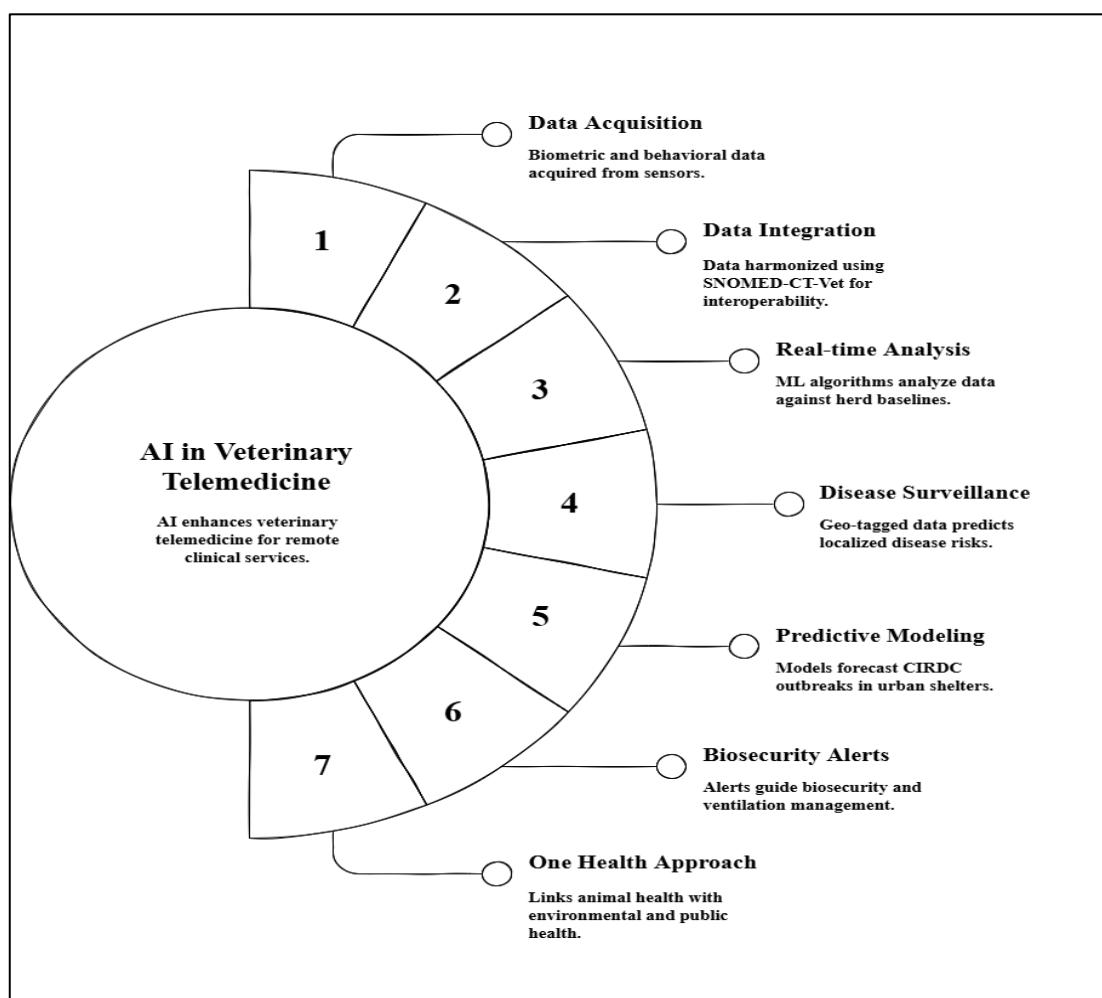


Figure 11: AI in Veterinary Telemedicine Illustrates the integration of AI in remote veterinary care, enhancing monitoring and management in diverse and resource limited settings. *Adapted by the author from (Ouyang, 2021 ; James et al. 2024).*

**CHAPTER IV: PREDICTIVE ANALYTICS IN VETERINARY
PHARMACOTHERAPY DEVELOPMENT**

IV.1. Machine Learning in Drug Development

veterinary pharmacology through AI is being shifted from how therapeutics such as identifying, optimizing, and evaluating, notably in the face of rising zoonotic threats, antimicrobial resistance, and the complexity of species specific pathophysiology. the incorporation of ML algorithms into veterinary drug discovery offers a precise, data centric alternative to traditional linear pharmacological pipelines, allowing for both accelerated compound screening and enriched therapeutic targeting.

In the context of precision veterinary pharmacology, AI offers powerful function analyzing complex biochemical and physiological parameters to enhance drug development and therapeutic decision making. One of its application lies in the use of chemical structure data, notably through SMILES (Simplified Molecular Input Line Entry System) strings and molecular fingerprints.

IV.1.1. Smiles

For the case of the SMILES is a formal representation schema that encodes a molecule's structure into a single line of ASCII characters (ASCII : American Standard Code for Information Interchange) is a character encoding standard that represents text in computers and digital systems using a set of 128 characters including letters, digits, punctuation marks, and control characters), making it easily interpretable by both humans and ML algorithms.

Each atom is represented by its chemical symbol ("C" for carbon, "O" for oxygen), and bonds are identified as special characters: single bonds are implicit or shown as "-", double bonds as "=", triple bonds as "#", and aromatic bonds often by lowercase letters. Parentheses indicate branches in molecular chains, and numbers signify ring closures. For example, the SMILES string for ethanol is "CCO", which expresses a two carbon chain with a terminal hydroxyl group (-OH).

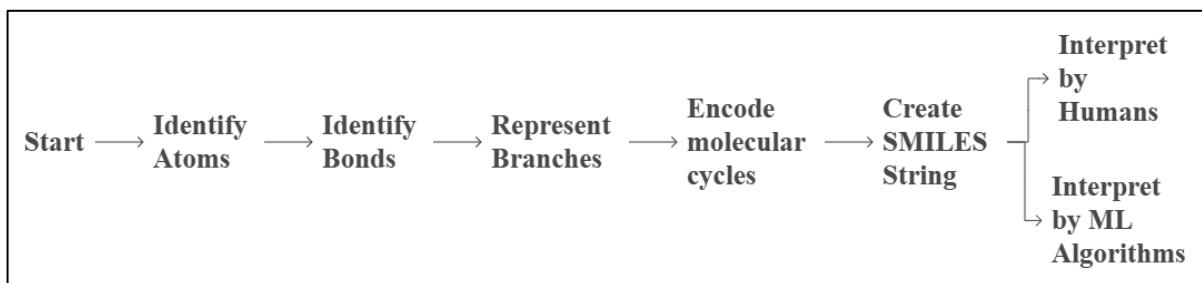


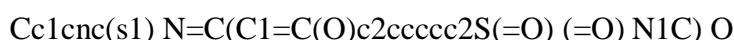
Figure 12: Schematic Representation of the SMILES Encoding Workflow, Adapted and modified by the author from **Qi et al. (2024)**.

This format simplifies the input for cheminformatics models and enables algorithms particularly graph based DL systems to interpret the molecular graph as a sequence without the need for complex molecular drawing or file types like MOL or SDF (The **MOL format** encodes detailed structural information of a single molecule—such as atom coordinates, bond types, stereochemistry, and charge which supports molecular docking, toxicology prediction, and computational simulations essential in early-stage veterinary pharmacology (**Capecci, Probst, & Reymond, 2020**). In comparison, the **SDF format** builds upon the MOL specification by allowing storage of multiple molecules alongside annotated descriptive data, including physicochemical properties (Property , LogP (Partition Coefficient) , Solubility , pKa , Topological Polar Surface Area (TPSA) , pharmacological values (MIC (Minimum Inhibitory Concentration) , IC₅₀ (Half-maximal Inhibitory Concentration) ,EC₅₀ (Effective Concentration) , Ki (Inhibition Constant), and species-specific therapeutic data. This makes SDF files indispensable for high throughput screening and ML based modeling, especially in developing species appropriate therapies and optimizing drug profiles across diverse animal populations (**Qi et al., 2024**).

For exemple retrived from (**PubChem, 2024**) :

Enrofloxacin :

Meloxicam :



IV.1.2 .Molecular fingerprints

Molecular fingerprints are foundational computational tools in drug discovery, serving to represent the chemical structure of compounds as fixed length binary or numerical vectors. Unlike SMILES (Simplified Molecular Input Line Entry System) strings that encode molecular

structure as linear ASCII text, molecular fingerprints extract structural patterns such as functional groups, atom pairs, and ring systems into bit vectors that are computationally tractable for ML algorithms and similarity searches. Each bit in the fingerprint corresponds to a preestablished molecular descriptor; if the corresponding substructure is present in the molecule, the bit is set to "1", otherwise it remains "0". These descriptors are typically derived from the molecular graph parsed from 2D or 3D chemical structures (Capecchi et al., 2020).

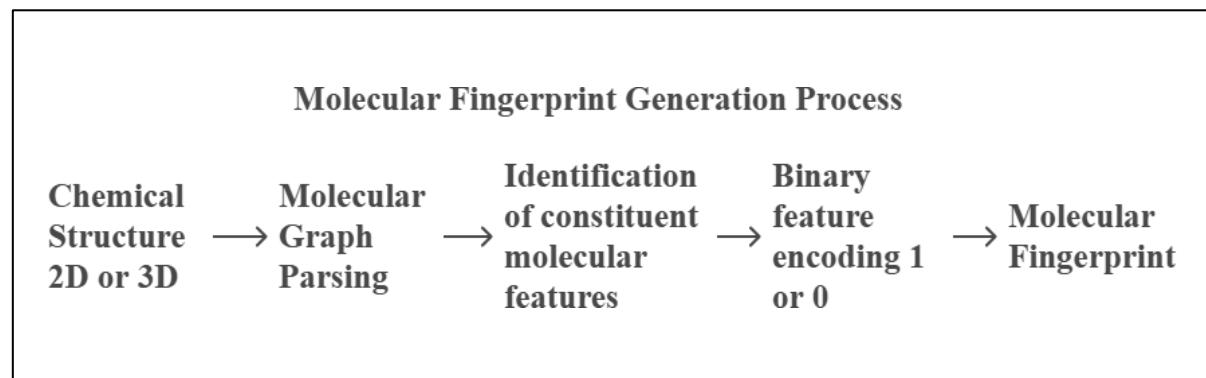


Figure 13: Molecular Fingerprint Generation Process Binary encoding scheme indicating the presence (1) or absence (0) of molecular substructures. Adapted and illustrated by the author from Capecchi et al. (2020).

Within veterinary drug development, molecular fingerprints facilitate essential tasks including virtual screening, ligand receptor matching, toxicity prediction, and quantitative structure activity relationship (QSAR) modeling. Capecchi, Probst, and Reymond (2020) introduced the MAP4 (MinHashed Atom Pair up to four bonds) which is a newer fingerprint that combines atom pair fingerprints (which consider distances between atom types) with MinHashing, a technique that compresses the fingerprint into reducing dimensional representation while preserving similarity(MAP4 can be used to compare antimicrobial peptides (AMPs) or complex natural products), an advanced algorithm that integrates circular substructures with atom pair distance relationships. Unlike fingerprints such as ECFP4 that encodes the local chemical environment around each atom in a molecule by considering circular substructures up to a radius of 2 bonds (hence “4” in ECFP4, meaning a diameter of 4 bonds). It generates a binary vector where each bit represents the presence or absence of specific atom-centered substructures. Within veterinary pharmacology perspective, the application of such fingerprinting techniques is highly impactful. Qi et al. (2024) suggest the integration of molecular fingerprints into ML pipelines for predictive modeling of pharmacokinetic (PK) and pharmacodynamic (PD) parameters. For instance, analysis of MAP4 fingerprints of NSAID

analogues such as meloxicam can reveal structural motifs associated with species specific toxicity, including renal sensitivity in felines.

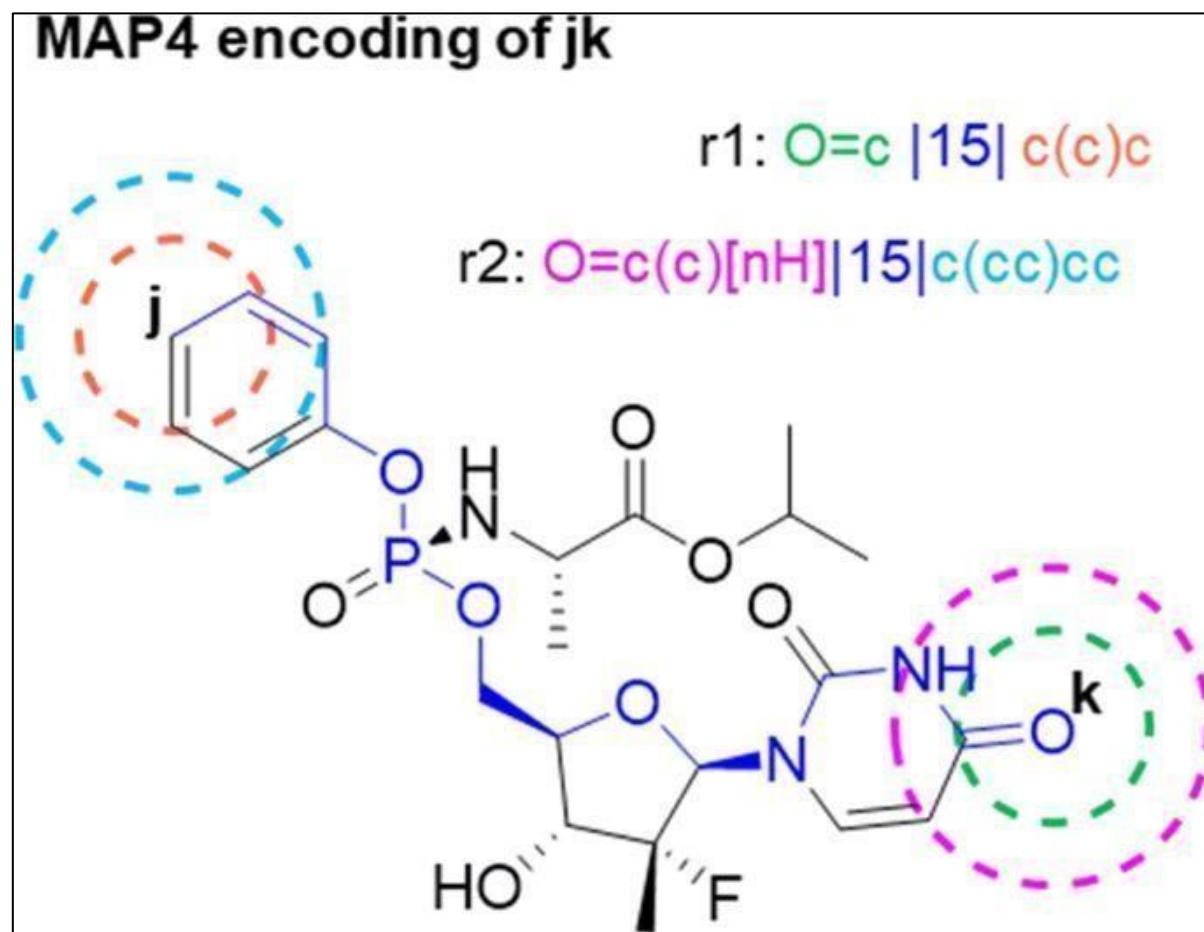


Figure 14 : MAP4 Atom Pair Encoding Strategy Circular substructures centered around atoms *j* and *k* are extracted at radii $r = 1$ and $r = 2$ and represented as SMILES strings. These fragments are then arranged lexicographically and separated by the topological bond distance between the atom pair along the shortest path (highlighted in blue). The resulting character strings constitute the MAP4 atom-pair molecular fragments for each radius, as described in **Capecchi et al. (2020)**.

Molecular fingerprints serve as algorithmically efficient representations of chemical compounds as shown in **figure 15**, capturing key structural parameters such as functional groups or substructures. These vectors facilitate rapid similarity comparisons and are central to ML driven drug repurposing, toxicity prediction, and antimicrobial modeling in veterinary medicine. For example, structurally similar NSAIDs like meloxicam and carprofen can be grouped by ML algorithms to evaluate therapeutic potential or species-specific metabolism risks (**Sahayashela et al., 2022**).

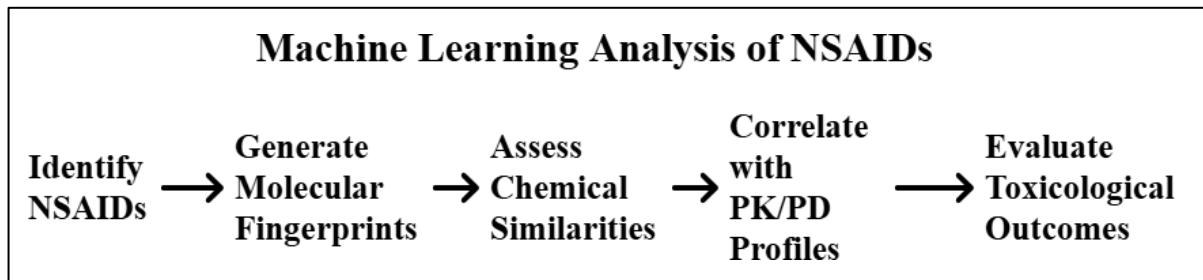


Figure 15: Machine Learning-Based Analysis of NSAIDs, visualization of pharmacokinetic and pharmacodynamic (PK/PD) profiles using machine learning methodologies. Adapted and created by the author based on **Datta et al. (2021)**.

Within veterinary molecules such as enrofloxacin or flunixin meglumine permit automated computational models to forecast critical pharmacological attributes including solubility, receptor binding affinity, and species-specific toxicity. This is particularly impactful for identifying safer analogues in sensitive species, such as felines prone to NSAID consisting of nephrotoxicity. AI assists facilitating the incorporation of omics data into diagnostic protocols through the computational interpretation of transcriptomic datasets to uncover biomarkers like IL-6 or haptoglobin in diseases such as bovine respiratory disease, supporting early metaphylactic intervention. In parallel, immunological markers such as immunoglobulin Y (IgY) titers, which indicate humoral immune responses, and T-cell activation metrics, reflective of cellular immunity, serve as key diagnostic markers of host pathogen interaction state.

When following a consistent analytical structure collected and digitized, these biomarkers can be integrated into ML algorithms especially supervised models like random forests or support vector machines to stratify animals based on their likelihood of harboring subclinical infections, such as *Salmonella enterica* or *Campylobacter jejuni*.

For instance, birds manifesting elevated IgY titers paired with prolonged T-cell proliferation responses may be recognized as active or past carriers, even in the absence of overt clinical symptoms. This provides continuous classification of risk at the flock level. As demonstrated in the literature (**Qi et al., 2024; Alsulimani et al., 2024**). Advanced ML techniques like Support Vector Machines (SVMs), Random Forests, and deep neural networks are widely used with in veterinary pharmacology. These algorithms differentiate toxicity, forecast ligand receptor affinity, and infer pharmacokinetics (PK) and pharmacodynamics (PD), ML allows comprehensive modeling of host pathogen-drug interactions.

Molecular fingerprints and machine learning are reshaping veterinary drug development, offering scalable, data-oriented approaches to therapeutic innovation. Their integration into precision veterinary medicine aligns with ethical standards and the One Health framework, as emphasized by **Qi et al. (2024)**, **Vamathevan et al. (2019)**, and **Sahayashela et al. (2022)**. For instance, two non-steroidal anti-inflammatory drugs (NSAIDs) like meloxicam and carprofen may have similar fingerprint patterns due to shared structural motifs, allowing machine learning models to group them by therapeutic action or species-specific metabolism as shown in the **figure 16**.

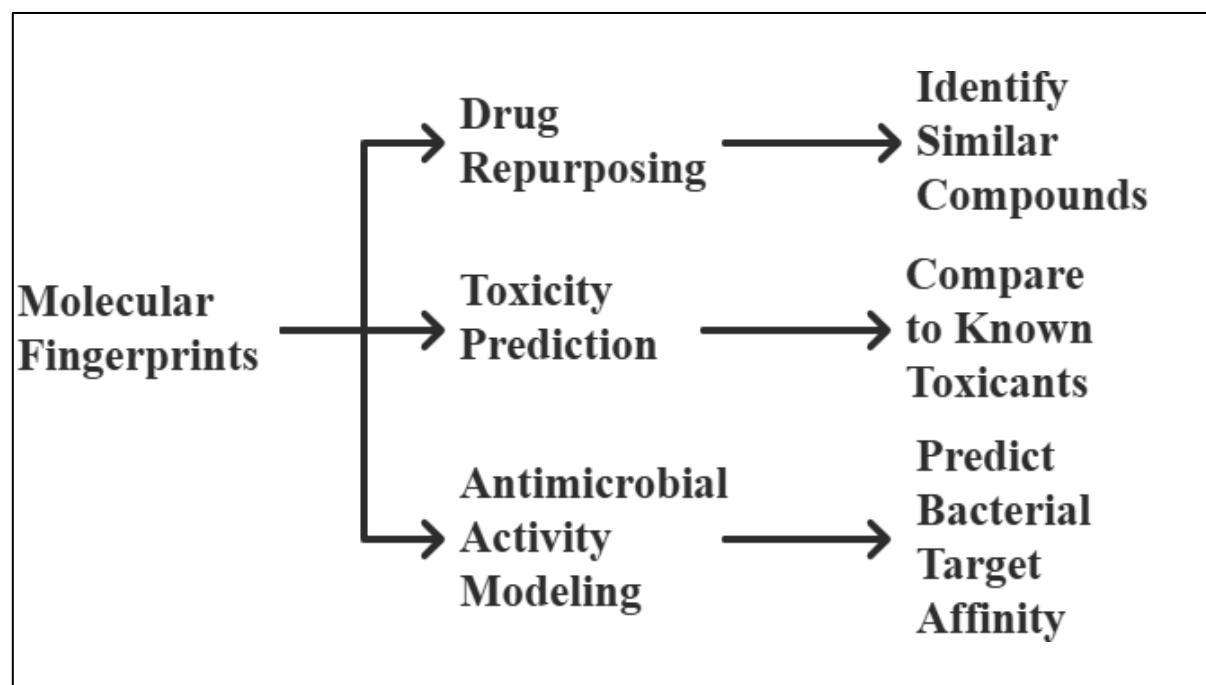


Figure 16: Application of Molecular Fingerprints in Drug Discovery, illustration of the operational framework and role of molecular fingerprints in computational drug discovery. Developed by the author based on **Sahayashela et al. (2022)**.

The structural encodings of veterinary pharmacological agents such as *enrofloxacin* or *flunixin meglumine* permit ML algorithms to examine compound configurations to estimate the core pharmacological behaviors, comprising solubility, species specific toxicity, and receptor binding affinity. Additionally, deliver individualized veterinary treatment through integration of pharmacokinetic (PK) and pharmacodynamic (PD) modeling. These models characterize the PK and PD profiles of drugs in how they are absorbed, distributed, metabolized, and eliminated, alongside their physiological effects. In the treatment of canine epilepsy with *phenobarbital*, AI can synthesize PK data (plasma concentrations over time) with PD outcomes (seizure

frequency) to recommend the safest dosing that balances efficacy and safety, minimizing undesirable effects like sedation or hepatotoxicity.

Within parasite management, ML is increasingly used to enhancing the precision and safety of antiparasitic therapeutic interventions through in silico modeling. These computational models analyze genomic, transcriptomic, and biochemical data from both host and parasite to simulate metabolic interactions and predict pharmacodynamic responses. This enables veterinarians to select the most effective antiparasitic agents while minimizing the risk of host toxicity.

The approach is particularly valuable in multi species farming systems, where off-label drug use is common and poses risks of resistance or adverse effects due to interspecies metabolic differences ,for example, such models can simulate how an antiparasitic drug like ivermectin interacts with the nervous system of nematodes while simultaneously estimating potential toxicity in a specific species (goats or alpacas), which may have different metabolic rates or detoxification pathways.

ML models trained on PK and PD data can predict cross-species efficacy and tolerance of drugs such as macrocyclic lactones and support resistance management strategies by identifying molecular resistance markers like β -tubulin gene mutations. These models help in anthelmintic prudent management by recommending optimized treatment protocols, promoting individualized therapy, and reducing the emergence of drug-resistant helminths, thereby aligning with both animal welfare and One Health objectives (**Qi et al., 2024; Sahayashela et al., 2022**).

IV.2. AI and Antimicrobial Resistance

Utilizing machine learning (ML) techniques within artificial intelligence (AI) frameworks to address antimicrobial resistance (AMR) in veterinary practice marks a critical progression in diagnostic methodologies and the strategic management of antimicrobial therapies. According to the analyses presented by **Alsulimani et al. (2024)** and **Ali et al. (2023)**, AI's ability to process and interpret high-dimensional, heterogeneous datasets positions it as a powerful tool for facilitating early detection of antimicrobial resistance (AMR), guiding evidence-based antimicrobial selection, and enabling longitudinal surveillance across animal populations. These applications are particularly critical in veterinary settings, where

microbiological testing infrastructure may be restricted, especially in rural or resource limited environments.

Through supervised ML techniques such as random forests, support vector machines (SVMs), and deep neural networks, these models learn to associate genomic or clinical patterns with antimicrobial susceptibility or resistance outcomes as illustrated in the **figure 17**.

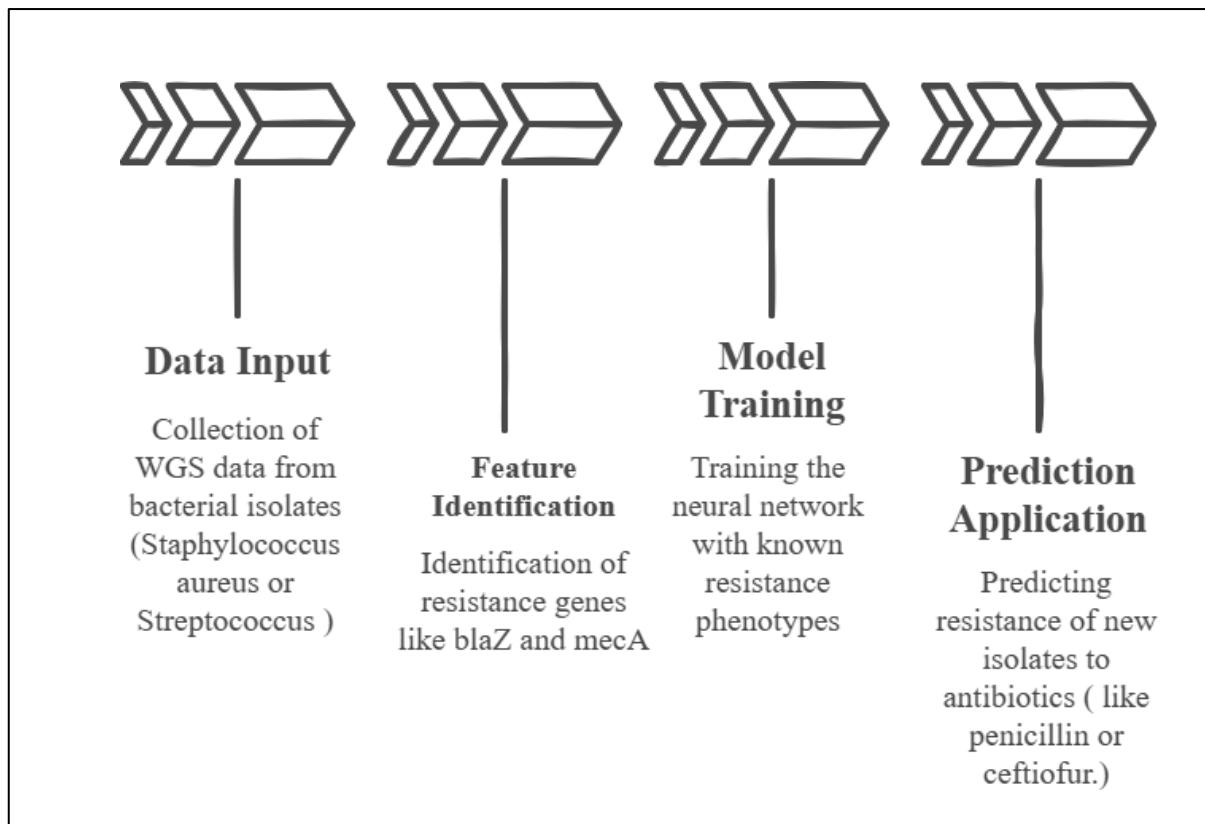


Figure 17: Schematic Representation of an Antimicrobial Resistance Prediction Model

Highlighting Key Genetic Markers. The model incorporates the detection of ***mecA*** (conferring methicillin resistance) and ***blaZ*** (encoding β -lactamase, an enzyme responsible for the degradation of β -lactam antibiotics). Adapted and illustrated by the author based on data from **Ali et al. (2023)**.

AI models are developed through exposure to multifactorial datasets encompassing a wide array of clinical, Imaging, and physiological variables, such as:

IV.2.1. Genomic sequences of bacterial isolates

Genomic sequencing of bacterial isolates including *Escherichia coli* from bovine mastitis, *Salmonella* spp. in poultry, and *Staphylococcus pseudintermedius* from canine

dermatological cases, forms the bases of AI-driven AMR prediction models within veterinary practice.

Primarily, isolates undergo whole genome sequencing (WGS), producing comprehensive data sets that include resistance genes, mobile genetic elements, and other genomic features. In the next stage, AI systems perform pattern extraction by scanning these genomes for known resistance determinants such as β -lactamases (*blaZ*, *blaCTX-M*), macrolide resistance genes (*erm*, *msr*), and methicillin-resistance gene (*mecA*), while also assessing the context of surrounding sequences (plasmids, integrons, transposons) that influence gene expression and transmission. During model training, supervised algorithms such as SVMs, Random Forests, or Neural Networks, are calibrated using labeled WGS data linked to phenotypic outcomes like minimum inhibitory concentrations (MICs) or traditional susceptibility testing. Once deployed, these AI-enabled platforms can efficiently infer resistance phenotypes in clinical contexts for example, identifying extended-spectrum β -lactamase (ESBL) production in *Escherichia coli* isolated from dairy cattle, detecting quinolone-resistant *Salmonella* strains in poultry, or flagging methicillin-resistant *Staphylococcus pseudintermedius* (MRSP) in canine patients.

This facilitates timely optimization of antimicrobial regimens. Integrated workflows enable resistance predictions to be delivered within 24–48 hours into electronic health records or laboratory information systems, thereby supporting evidence-based therapeutic decisions grounded in structured and systematically acquired clinical data. Furthermore, consolidating antimicrobial resistance profiles across multiple herds allows for the early recognition of emergent resistance trends, thereby informing the development and deployment of targeted regulatory and biosecurity interventions.

These AI-facilitated surveillance frameworks mark a strategic advancement in veterinary microbiology, enabling expedited clinical decision-making, optimization of therapeutic regimens, and improved disease management at the herd level (**Ali et al., 2023; Alsulimani et al., 2024**).

Characteristic	Escherichia coli	Salmonella spp.	Staphylococcus pseudintermedius
Source	Bovine mastitis	Poultry	Canine dermatological cases
Resistance Detection	Extended spectrum β -lactamase	Quinolone resistance	Methicillin resistance
AI Prediction Use	Dairy cow infection	Poultry isolates	Canine patients

Figure 18: Machine Learning-Based Prediction of Antimicrobial Resistance in Veterinary Clinical Settings (*Adapted by author from Ali et al., 2023; Alsulimani et al., 2024*).

IV.2.2. Phenotypic susceptibility profiles

Phenotypic antimicrobial susceptibility profiles, obtained through standardized methodologies such as minimum inhibitory concentration (MIC) determination and disc diffusion assays these profiles serve as critical input data within computational frameworks designed to predict antimicrobial resistance (AMR) in veterinary clinical contexts. In applied practice, each bacterial isolate such as *Escherichia coli*, *Salmonella* spp., or *Staphylococcus pseudintermedius* is subjected to standardized in vitro susceptibility assays to evaluate its response to selected antimicrobial agents, to assess its susceptibility to a preselected set of antimicrobial agents, thereby producing quantitative outputs such as minimum inhibitory concentration (MIC) values or inhibition zone diameters, which serve as foundational inputs for resistance profiling and AI model training. AI models incorporate these categorized phenotypic results to learn associations between genomic or clinical features and observable resistance phenotypes. For instance, a model trained with MIC values for **β -lactam antibiotics** can precisely predict whether a *Salmonella* isolate satisfies the validated veterinary breakpoint for resistance. Similarly, disc diffusion metrics, such as zone diameters for fluoroquinolones in *E. coli* from poultry are used to calibrate prognostic classification performance of AI algorithms. By connecting these phenotypic data with genotypic markers (*bla*-type genes) and

clinical metadata, machine learning systems can forecast antimicrobial resistance in under 48 hours, significantly reducing diagnostic turnaround time. Integration of these predictions into electronic systems supports veterinarians in making scientifically validated therapeutic strategies choosing narrow spectrum agents when susceptibility is confirmed or employing an alternative therapeutic class with increased potency when resistance is predicted, while simultaneously informing herd level clinical resource management policies. This synergy between classical microbiology and AI thus enhances diagnostic precision, optimizes therapeutic outcomes, and contributes to sustainable antimicrobial use in production and companion animal settings (Ali et al., 2023; Alsulimani et al., 2024). As demonstrated in **figure 19**.

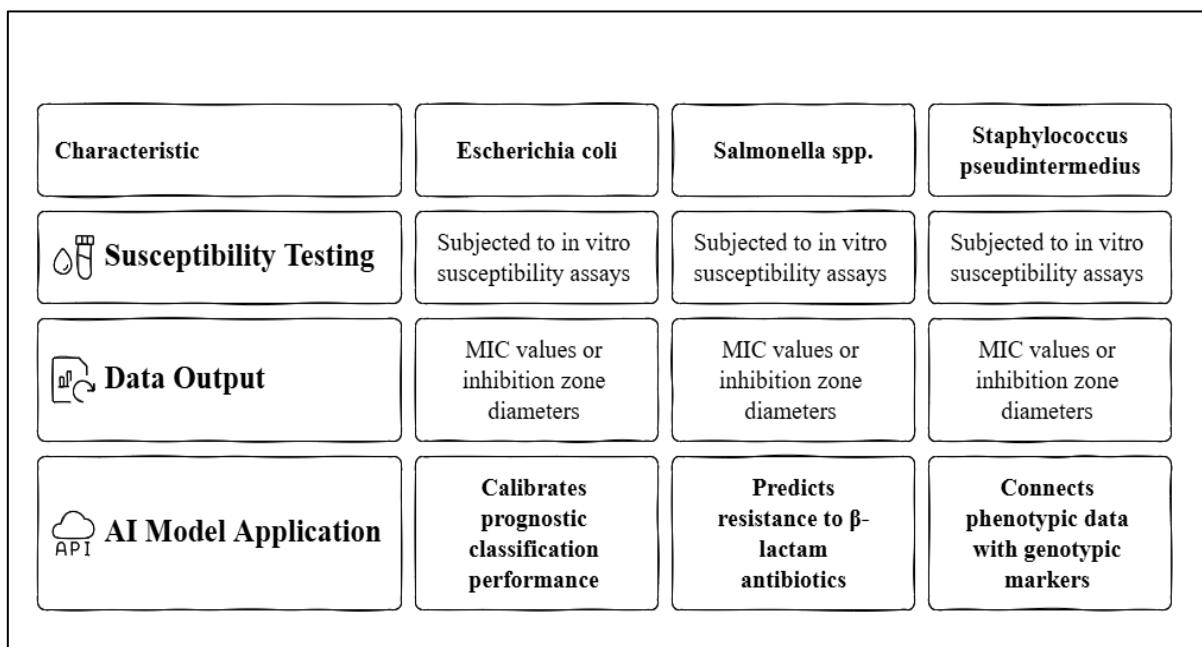


Figure 19: ML Driven Prediction of Antimicrobial Resistance in Veterinary Clinical practice

Illustration adapted and conceptualized by the author, based on data and methodologies from

Ali et al. (2023) and Alsulimani et al. (2024).

IV.2.3. Antimicrobial Stewardship and Surveillance in Veterinary Practice

Antimicrobial stewardship, as emphasized in the within AI integration, includes the responsible and supported by observed outcomes use of antibiotics to retain their efficacy, minimize resistance development, and enhance therapeutic outcomes across species. Within veterinary medicine, especially in production animal systems such as dairy farming, AI-systems provide a continuous surveillance which plays a pivotal role by analyzing aggregated datasets to detect usage trajectories and emerging resistance risks.

IV.2.3.1. Surveillance-Driven Protocol Optimization: Case Example from Dairy Calves

For instance, when electronic medical records and treatment histories are mined using ML models, patterns of antibiotic overuse such as the frequent empirical administration of broad-spectrum **cephalosporins**, can be correlated with poor clinical outcomes or pathogen shifts. In **dairy calves**, this has been linked to a higher incidence of *Cryptosporidium parvum* infection recurrence, potentially due to microbiota disruption or immunosuppressive consequences of inappropriate antimicrobial exposure. By recognizing these tendencies, AI systems can generate stewardship recommendations suggesting narrower spectrum alternatives, or even non antibiotic interventions such as fluid therapy, vaccination, or improved colostrum management. Furthermore, these insights feed back into population level surveillance, allowing veterinarians and farm managers to personalized herd health protocols based on instantaneous resistance progression and inter species differentiated responses.

This adaptive feedback loop aligns with One Health principles by addressing antimicrobial resistance not only as an individual animal concern, but also as a population and public health issue. As highlighted by **Alsulimani et al. (2024)**, the integration of AI into such programs promote the responsible utilization antibiotics also for earlier intervention, targeted drug use, and continuous monitoring, transitioning veterinary infectious disease control from reactive to proactive, data informed strategies.

IV.2.3.2. Predictive AMR Modeling in Intensive Livestock Systems

In veterinary medicine, particularly within **the domain of food producing animals**, artificial intelligence (AI)-driven predictive modeling for antimicrobial resistance (AMR) serves as a cornerstone of modern herd-level health management and biosecurity. As highlighted by **Ali et al. (2023)**, these models are exceptionally valuable in intensive production environments such as poultry farms and swine operations where high animal density increases the risk of rapid dissemination of resistant pathogens, including *Campylobacter* and *Escherichia coli*. The operational Framework begins with the collection of microbiological and environmental data through sentinel surveillance strategies.

This may include fecal sampling, water or feed testing, and metadata on treatment histories or environmental conditions. AI frameworks, especially those employing supervised machine learning methodologies such as random forest classifiers or deep neural architectures, these models are trained to discern associations between resistance phenotypes

,such as fluoroquinolone-resistant *Campylobacter* ,and explanatory variables including antimicrobial administration frequency, animal stocking density, and environmental parameters such as ambient temperature and relative humidity.Upon completion of training, these models exhibit the capability to forecast the emergence and possible propagation of antimicrobial resistance (AMR) within livestock production settings. As an illustration, the detection of a rising incidence of resistance to tetracyclines or third generation cephalosporins in swine production environments may prompt system level adjustments.

The AI-driven framework may recommend context specific, data supported adjustments to therapeutic or management protocols , These interventions may entail the optimization of antimicrobial protocols to align with emerging resistance patterns , the cyclical use of different antimicrobial classes to mitigate resistance development ,the extension of immunoprophylactic strategies to reduce susceptibility within the population , or the enhancement of pathogen containment protocols and hygiene standards in regions identified as transmission hotspots .The integration of these predictive tools supports not only more judicious antimicrobial use but also enables early, targeted intervention deacresing the likelihood of large-scale outbreaks and economic losses as showun in **figure 20**.

Moreover, the surveillance data generated through these systems contributes to national AMR monitoring frameworks and supports compliance with One Health objectives by reducing zoonotic transmission risk to humans via food chains or environmental contamination .Within veterinary practice these findings support the Adoption of targeted,informed therapeutic strategies by veterinarians and farm managers, such as :

- Enforcing evidence informed constraints on the utilization of specific antimicrobial agents to curb resistance development .
- Enhancing biosecurity in specific zones.
- Initiating group level vaccination or probiotic programs.(**de la Lastra et al., 2024**)

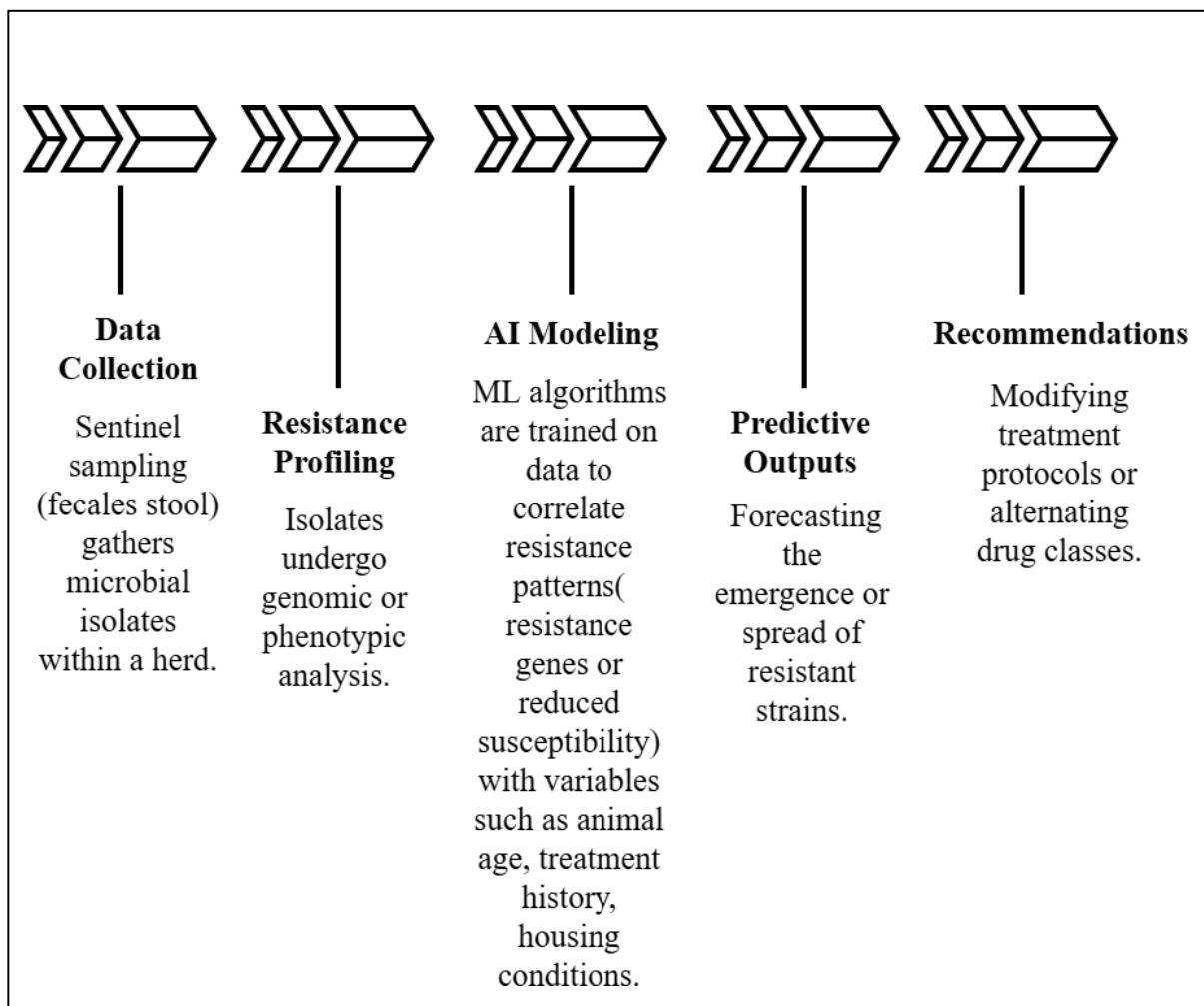


Figure 20: AI-Based Antimicrobial Resistance Forecasting for Herd Level Surveillance and Intervention Strategies. Adapted and illustrated by the author, based on data and methodology from **Ali et al. (2023)**.

Within veterinary practice these findings support the Adoption of targeted, informed therapeutic strategies by veterinarians and farm managers, such as :

- Enforcing evidence informed constraints on the utilization of specific antimicrobial agents to curb resistance development .
- Enhancing biosecurity in specific zones.
- Initiating group level vaccination or probiotic programs (**de la Lastra et al., 2024**).

IV.2.3.3. Clinical Integration in Equine Practice and Strategic AMR Mitigation

In equine veterinary practice, the integration of artificial intelligence (AI) with clinical data is proving valuable in the early identification and management of multi drug resistant (MDR) infections, particularly involving *Streptococcus equi*, the causative agent of strangles. As

highlighted by **Ali et al. (2023)**, AI models can process and correlate unstructured clinical notes (such as physical examination findings, treatment history, or symptom progression) with microbiological laboratory outputs, including culture results and antimicrobial susceptibility profiles as demonstrated in the **figure 21**. As **Ali et al. (2023)** emphasize, the core advantage lies in shifting from reactive to **proactive intervention** moving beyond empirical prescribing toward data-informed antimicrobial stewardship.

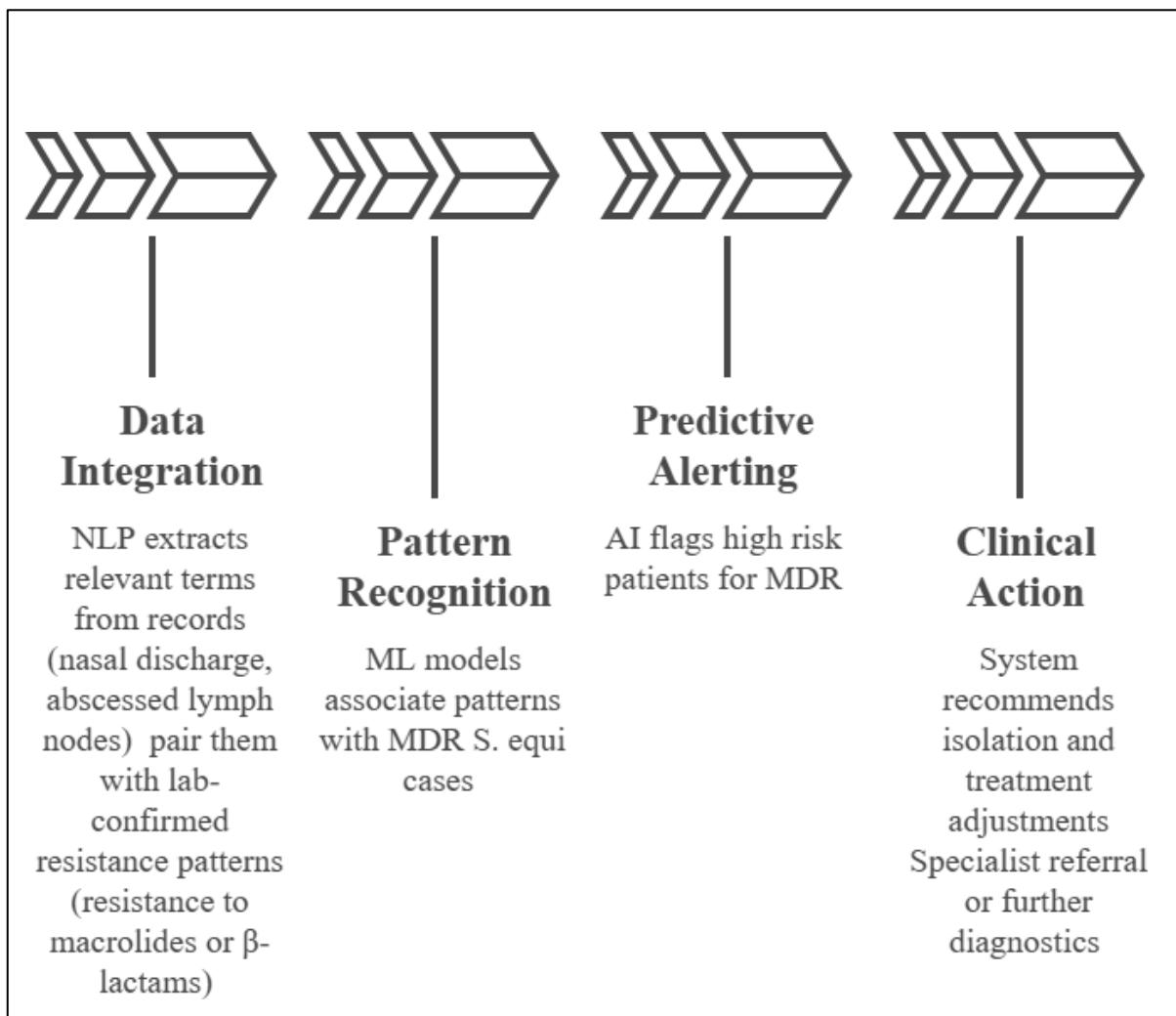


Figure 21 : AI-Enabled Management of Multidrug-Resistant (MDR) Infections in Veterinary Contexts *Illustration by the author, adapted from Ali et al. (2023).*

CHAPTER V. LIMITATION AND RECOMMENDATIONS

V.1. Limitations of AI in Veterinary Practice

Despite its significant potential, the integration of artificial intelligence into veterinary medicine is constrained by several critical challenges :

- Data Quality and Standardization: Veterinary datasets are often fragmented, variably structured, and constrained by species-specific nuances. The absence of annotated data and standardized terminologies restricts model generalizability, particularly for rare or non-traditional species.
- Computational Resources and Network Support :Numerous veterinary clinics, particularly in rural or resource-constrained areas, lack the requisite infrastructure to support effective AI integration , including access to cloud infrastructure, integrated digital medical records, and stable network connectivity.
- Imbalances in Training Data and Outcome Prediction :Predictive frameworks trained on limited human or region-specific datasets may not perform reliably across diverse animal cohorts.Diagnostic fidelity may be compromised when models are trained on datasets lacking comprehensive representation of veterinary diversity.
- Limited Interpretability of DL Architectures : Numerous AI systems, especially those employing DL frameworks, exhibit limited interpretability due to their inherently opaque computational processes.Such limited transparency can impede the clinical validation of AI outputs and potentially undermine the confidence of veterinary professionals in their application.
- Ethical Considerations in AI Deployment : The regulatory and ethical infrastructure governing AI applications in veterinary medicine is still in its formative stages, lacking comprehensive standards for responsible deployment . Salient concerns encompass data governance, confidentiality, legal liability, and intellectual property considerations , particularly within collaborative or multi-institutional veterinary frameworks.
- Veterinary Workforce Competency and Educational Preparedness : The absence of structured education in AI among veterinary practitioners constitutes a significant impediment to effective adoption and utilization of AI-driven tools. In the absence of sufficient training and institutional support, there remains a tangible risk of AI tool misapplication or hesitancy toward their integration in clinical practice.

V.2. Recommendations

To mitigate the aforementioned limitations and promote the responsible and effective integration of artificial intelligence within veterinary practice, the following strategic recommendations are advanced:

- Harmonization and System Compatibility: The implementation of universally accepted terminologies—such as the SNOMED-CT Veterinary Extension—and the alignment of data structuring protocols are essential to facilitate interoperability between diagnostic laboratories, clinical settings, and artificial intelligence systems.
- Expansion of datasets encompassing a wide range of animal : Directed resource allocation is essential for the development of comprehensive, taxon-specific datasets to support robust AI model training. Cross-sectoral partnerships are pivotal in facilitating this endeavor , collaborative efforts encompassing academic institutions, veterinary practitioners, and public health stakeholders are fundamental to ensuring balanced representation across species and epidemiological contexts.
- Comprehensibility of Computational Outputs : Priority should be given to the advancement and deployment of transparent ('white-box') artificial intelligence frameworks that facilitate interpretability and clinical accountability. Such systems ought to enable veterinary professionals to trace diagnostic reasoning and assess algorithmic consistency, especially within contexts involving critical clinical decisions.
- Advancement of Digital and Technological Capacity : Investment from public institutions and industry partners is essential to strengthen digital capacities within veterinary systems, with particular emphasis on addressing infrastructural deficits in underserved settings. This encompasses the provision of financial support for the implementation of advanced diagnostic platforms, interoperable electronic health record systems equipped for AI integration, and scalable cloud-based data management infrastructure.
- Curricular Reform for AI Proficiency in Veterinary Training : Foundational and advanced competencies in AI should be systematically integrated into veterinary curricula at both undergraduate and postgraduate levels to ensure future practitioners are proficient in the application of digital tools in clinical and research contexts. Educational programs should prioritize the development of both technical proficiency and ethical acumen concerning the deployment of AI in veterinary contexts.
- Policy Frameworks for Ethical and Regulatory Compliance : It is imperative that national and international veterinary oversight bodies establish comprehensive frameworks for the

CHAPTER V. LIMITATION AND RECOMMENDATIONS

validation and continuous evaluation of AI models deployed in clinical settings.ongoing performance monitoring following deployment, as well as clearly delineated provisions for clinical accountability.

Conclusion

The integration of AI including ML, DL, and NLP has markedly reshaped the landscape of veterinary biomedical sciences. This project systematically examines AI-driven innovations across key domain including diagnostic imaging, parasitological surveillance, predictive epidemiology, AMR monitoring, drug discovery, biosensor-based physiological analytics , and veterinary telemedicine.

Collectively facilitate a transition from passive to predictive, data-informed clinical decision-making, thereby enhancing diagnostic sensitivity, specificity, and temporal precision. AI-enabled platforms ,such as the Vetscan Imagyst® for fecal egg quantification and CNNs for thoracic radiographic interpretation , have exhibited diagnostic efficacy on par with and in certain scenarios exceeding traditional approaches, particularly when deployed on curated, species-specific datasets. In the context of AMR mitigating , AI technologies have augmented early detection of resistance tendencies , optimized antimicrobial selection, and supported targeted intervention strategies, aligning veterinary care with One Health imperatives. furthermore , the integration of AI-enabled wearable devices and remote telemedicine platforms to significantly improved access to continuous health surveillance and veterinary consultation in remote or resource-limited settings.

Ultimately, AI serves not as a replacement for clinical expertise, but as a powerful augmentative tool , increasing diagnostic precision, expediting clinical triage, and supporting evidence-based interventions across diverse species, clinical systems, and geographies contexts.

REFERENCES

1. Akbarein, H., Taaghi, M., Mohebbi, M., & Soufizadeh, P. (2025). Applications and considerations of artificial intelligence in veterinary sciences : A narrative review. *Veterinary Medicine and Science*, 11. <https://doi.org/10.1002/vms3.70315>
2. Akinsulie, O. C., Idris, I., Aliyu, V. A., Shahzad, S., Banwo, O. G., Ogunleye, S. C., ... Soetan, K. O. (2024). The potential application of artificial intelligence in veterinary clinical practice and biomedical research. *Frontiers in Veterinary Science*, 11, 1347550. <https://doi.org/10.3389/fvets.2024.1347550>
3. Ali, T., Ahmed, S., & Aslam, M. (2023). Artificial intelligence for antimicrobial resistance prediction: challenges and opportunities towards practical implementation. *Antibiotics*, 12(3), 523
4. Alsulimani, A., Akhter, N., Jameela, F., Ashgar, R. I., Jawed, A., Hassani, M. A., & Dar, S. A. (2024). The impact of artificial intelligence on microbial diagnosis. *Microorganisms*, 12(6), 1051
5. Appleby, R. B., & Basran, P. S. (2022). Artificial intelligence in veterinary medicine. *Journal of the American Veterinary Medical Association*, 260(8), 819–824. <https://doi.org/10.2460/javma.22.03.0093>
6. Banzato, T., Wodzinski, M., Burti, S., Vettore, E., Muller, H., & Zotti, A. (2023). An AI-based algorithm for the automatic evaluation of image quality in canine thoracic radiographs. *Scientific Reports*, 13(1), 17024. <https://doi.org/10.1038/s41598-023-44089-4>
7. Basran, P. S., & Appleby, R. B. (2022). The unmet potential of artificial intelligence in veterinary medicine. *American Journal of Veterinary Research*, 83(5), 385–392. <https://doi.org/10.2460/ajvr.22.03.0038>
8. Burti, S., Banzato, T., Coghlan, S., Wodzinski, M., Bendazzoli, M., & Zotti, A. (2024). Artificial intelligence in veterinary diagnostic imaging: Perspectives and limitations. *Research in Veterinary Science*, 175, 105317. <https://doi.org/10.1016/j.rvsc.2024.105317>
9. Capecchi, A., Probst, D., & Reymond, J. L. (2020). One molecular fingerprint to rule them all : drugs, biomolecules, and the metabolome. *Journal of Cheminformatics*, 12, 43. <https://doi.org/10.1186/s13321-020-00445-4>
10. Chambers, R. D., Yoder, N. C., Carson, A. B., Junge, C., Allen, D. E., Prescott, L. M., ... Lyle, S. (2021). Deep learning classification of canine behavior using a single collar-

mounted accelerometer: Real-world validation. *Animals*, 11(6), 1549. <https://doi.org/10.3390/ani11061549>

11. Chen, M., Zhang, H., Li, X., Wang, J., & Liu, Y. (2022). Wireless AI-powered IoT sensors for laboratory mice behavior recognition. *IEEE Internet of Things Journal*, 9(3), 1899–1912. <https://doi.org/10.1109/JIOT.2021.3090583>

12. Datta, A., et al. (2021). Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort. *PLOS Computational Biology*, 17(7), e1009053. <https://doi.org/10.1371/journal.pcbi.1009053>

13. Fox, K., Fox, J., Bexfield, N., & Freeman, P. (2021). Computerised decision support in veterinary medicine, exemplified in a canine idiopathic epilepsy care pathway. *Journal of Small Animal Practice*, 62(10), 911–917. <https://doi.org/10.1111/jsap.13345>

14. Hur, B., Hardefeldt, L., Verspoor, K., Baldwin, T., & Gilkerson, J. (2020). Describing the antimicrobial usage patterns of companion animal veterinary practices : Free text analysis of more than 4.4 million consultation records. *PLOS ONE*, 15(3), e0230049. <https://doi.org/10.1371/journal.pone.0230049>

15. James, A., Teslim, B., & Akin, I. (2024). *Precision livestock farming: Integrating technology into animal health monitoring*.

16. Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: Review, opportunities and challenges. *Briefings in Bioinformatics*, 19(6), 1236–1246. <https://doi.org/10.1093/bib/bbx044>

17. Muhammad Azhar Mushtaq, Abid Sultan, Muhammad Afrasayab, Taimoor Zubair, & Abid-bin-Shakir. (2019). New Cryptographic Algorithm Using ASCII Values and Gray Code (AGC). In *Proceedings of the 4th International Conference on Big Data and Computing (ICBDC '19)*. ACM, NY, USA, 242–246. <https://doi.org/10.1145/3335484.3335540>

18. Ouyang, Z. (2021). *Health informatics in veterinary medicine: State of the literature, day-1 competencies, perceptions of telemedicine and application of predictive modeling*.

19. PubChem. (2024). Enrofloxacin (CID : 71188). *National Center for Biotechnology Information*. <https://pubchem.ncbi.nlm.nih.gov/compound/Enrofloxacin>

20. PubChem. (2024). Meloxicam (CID : 54677470). *National Center for Biotechnology Information*. <https://pubchem.ncbi.nlm.nih.gov/compound/Meloxicam>

21. Qi, X., Zhao, Y., Qi, Z., Hou, S., & Chen, J. (2024). Machine Learning Empowering Drug Discovery : Applications, Opportunities and Challenges. *Molecules*, 29(4), 903. <https://doi.org/10.3390/molecules29040903>

22. ResearchGate. (2024). *Expanding access to veterinary clinical decision support in resource-limited settings : A scoping review of clinical decision support tools in medicine and antimicrobial stewardship.* <https://www.researchgate.net/publication/381488530>

23. Sahayashela, V. J., Lankadasari, M. B., Dan, V. M., Dastager, S. G., Pandian, G. N., & Sugiyama, H. (2022). Artificial intelligence in microbial natural product drug discovery: Current and emerging role. *Natural Product Reports*, 39(12), 2215–2230. <https://doi.org/10.1039/D2NP00041A>

24. Steuer, A., Fritzler, J., Boggan, S., et al. (2024). Validation of Vetscan Imagyst®, a diagnostic test utilizing an artificial intelligence deep learning algorithm, for detecting strongyles and Parascaris spp. In equine fecal samples. *Parasites & Vectors*, 17, 465. <https://doi.org/10.1186/s13071-024-06525-w>

25. Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., ... Zhao, S. (2019). Applications of machine learning in drug discovery and development. *Nature Reviews Drug Discovery*, 18(6), 463–477. <https://doi.org/10.1038/s41573-019-0024-5>

26. Zhao, X., Tanaka, R., Mandour, A. S., Shimada, K., & Hamabe, L. (2025). Remote vital sensing in clinical veterinary medicine: A comprehensive review of recent advances, accomplishments, challenges, and future perspective. *Animals*, 15(7), 1033. <https://doi.org/10.3390/ani15071033>

27. Szlosek, D., Coyne, M., Riggott, J., Knight, K., McCrann, D. J., & Kincaid, D. (2024). Development and validation of a machine learning model for clinical wellness visit classification in cats and dogs. *Frontiers in veterinary science*, 11, 1348162. <https://doi.org/10.3389/fvets.2024.1348162>

28. Cheng, P. M., Montagnon, E., Yamashita, R., Pan, I., Cadrin-Chênevert, A., Perdigón Romero, F., Chartrand, G., Kadoury, S., & Tang, A. (2021). Deep Learning: An Update for Radiologists. *Radiographics : a review publication of the Radiological Society of North America, Inc*, 41(5), 1427–1445. <https://doi.org/10.1148/rg.2021200210>

29. Deekonda, N. (2024). Assessing Cardiomegaly in Dogs Using a Simple CNN Model. *arXiv preprint arXiv:2407.06092*.

30. Aslam, A. B. et al. (2023). Leveraging Natural Language Processing For Public Health Screening On YouTube: A COVID-19 Case Study. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2306.01164>

31. Hossain, E., Ferdous, S. M., Jahan, M. S., & Fatema, K. (2023). *Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review*. arXiv. <https://doi.org/10.48550/arxiv.2306.12834>

32. Zhang, Z., Liu, C., Xia, C., & Xu, Y. (2023). *Mining healthcare procurement data using text mining and natural language processing—Reflection from an industrial project*. arXiv. <https://doi.org/10.48550/arxiv.2301.03458>

33. Venkataraman, G. R., Roth, D., & Shortliffe, E. H. (2020). FasTag: Automatic text classification of unstructured medical narratives. *PLOS ONE*, 15(6), e0234647. <https://doi.org/10.1371/journal.pone.0234647>

34. Henry, P., Smith, L., Wang, J., & Turner, R. (2024). Recurrent steroid-responsive hypertrophic obstructive cardiomyopathy in a Maine Coon cat. *Veterinary Record Case Reports*, 13(1), e1003. <https://doi.org/10.1002/vrc2.1003>

35. Lee, S., Kim, H., Park, J., Choi, Y., & Seo, K. (2025). Deep learning-based evaluation of the severity of mitral regurgitation in canine myxomatous mitral valve disease patients using digital stethoscope recordings. *BMC Veterinary Research*, 21(1), Article 48. <https://doi.org/10.1186/s12917-025-04802-z>

36. Krupiński, J. et al. (2023). Computer-Aided Cytology Diagnosis in Animals: CNN-Based Image Quality Assessment for Accurate Disease Classification. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2308.06055>

37. Lee, C. et al. (2024). Clinical values of nuclear morphometric analysis in fibroepithelial lesions. *Breast Cancer Research*, 26(1). <https://doi.org/10.1186/s13058-024-01912-8> write me the citation in text format Renard, J. et al. (2021). Machine-learning algorithm as a prognostic tool in non-obstructive acute-on-chronic kidney disease in the cat. *Journal of Feline Medicine and Surgery*, 23(12), 1140-1148. <https://doi.org/10.1177/1098612x211001273>

38. Pijnacker, T., Bartels, R., van Leeuwen, M., & Teske, E. (2022). Identification of parameters and formulation of a statistical and machine learning model to identify *Babesia canis* infections in dogs using available ADVIA hematology analyzer data. *Parasites & vectors*, 15(1), 41. <https://doi.org/10.1186/s13071-022-05163-4>

39. Xu, W., Zhai, Q., Liu, J., Xu, X., & Hua, J. (2024). A lightweight deep-learning model for parasite egg detection in microscopy images. *Parasites & vectors*, 17(1), 454. <https://doi.org/10.1186/s13071-024-06503-2>

40. Horváth, A. et al. (2021). A field study using different technologies to detect calving at a large-scale hungarian dairy farm. *Reproduction in Domestic Animals*, 56(4), 673-679. <https://doi.org/10.1111/rda.13904>
41. Bhowmik, R. T. (2021). A Multi-Modal Respiratory Disease Exacerbation Prediction Technique Based on a Spatio-Temporal Machine Learning Architecture. arXiv (Cornell University). <https://doi.org/10.48550/arxiv.2103.03086>
42. de la Lastra, J. M. P., Wardell, S. J. T., Pal, T., de la Fuente-Nunez, C., & Pletzer, D. (2024). From Data to Decisions: Leveraging Artificial Intelligence and Machine Learning in Combating Antimicrobial Resistance - a Comprehensive Review. *Journal of medical systems*, 48(1), 71. <https://doi.org/10.1007/s10916-024-02089-5>