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Abstract 

 

This study examine the integration of artificial intelligence (AI) in veterinary medicine, 

with a focus on diagnostics, pharmacotherapy, and health monitoring. 

 

Through machine learning (ML), deep learning (DL), and natural language processing 

(NLP), AI technologies are being used to improve diagnostic accuracy, clinical decision- 

making, and disease surveillance. Applications include image analysis, predictive modeling, 

wearable sensor technologies, and drug development, particularly for antimicrobial resistance 

(AMR). 

 

The work highlights the transformative potential of AI in supporting evidence-based 
veterinary practice and enhancing animal health outcomes across both clinical and field settings. 

 

Keywords: artificial intelligence, veterinary medicine, machine learning, diagnostics, sensors, 

antimicrobial resistance. 

 

Résumé 

 

Cette étude explore l’intégration de l’intelligence artificielle (IA) en médecine 

vétérinaire, en mettant l’accent sur le diagnostic, la pharmacothérapie et la surveillance de la 

santé animale. 

 

Grâce au machine learning (ML), deep learning (DL) et au traitement automatique du 

langage naturel (NLP), les technologies d’IA permettent d’améliorer la précision diagnostique, 

l’aide à la décision clinique et la surveillance épidémiologique. Les applications abordées 

incluent l’analyse d’images, la modélisation prédictive, les capteurs connectés, et le 

développement médicamenteux, notamment contre la résistance antimicrobienne (RAM). 

 

Ce travail souligne le potentiel transformateur de l’IA pour une pratique vétérinaire 
fondée sur les preuves et orientée vers des soins de santé animale améliorés. 

 

Mots clés : intelligence artificielle, médecine vétérinaire, apprentissage automatique, 

diagnostic, capteurs, résistance antimicrobienne. 

 

 الملخص

 

 

 الآلي التعلم تقنيات خلال من الدوائي والعلاج التشخيص، على التركيز مع البيطري، الطب في الاصطناعي الذكاء تقنيات دمج الدراسة هذه ،تتناول

 دقة لتعزيز الاصطناعي. الطبية الصور تحليل التطبيقات ،تشمل الحيوانات صحة ومراقبة. الذكاء أدوات تُستخدم الطبيعية، اللغة ومعالجة العميق والتعلم

 لمواجهة خصوصًا الأدوية وتطوير للارتداء، القابلة الاستشعار وأجهزة التنبؤية، والنماذج. الأمراض ومتابعة السريري، القرار اتخاذ ودعم التشخيص،
 الذكاء والميدان العيادات في الحيوانية. الصحة نتائج وتحسين الأدلة على المبني البيطري الطب دعم في الاصطناعي للذكاء التحويلية الإمكانات العمل هذا يبرز الميكروبات مضادات مقاومة

 

 الكلمات المفتاحية : أجهزة التشخيص، الآلي، التعلم البيطري، الطب الاصطناعي،
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Introduction 

 
While a few instructors at our institutions possess solid expertise in artificial intelligence 

(AI), their familiarity often remains limited to generative platforms like ChatGPT and Gemini. 

These belong to a much broader AI spectrum spanning across data classification, analytical 

analytics, and objective interpretation of complex, high-dimensional datasets. Such capabilities 

are vital in enhancing clinical workflows with high accuracy, particularly through repetitive 

processing of extensive veterinary records, epidemiological surveillance, and interpretation of 

laboratory results. AI’s impact on veterinary diagnostics is part of a long legacy. Since the 

establishment of the Conference of Veterinary Laboratory Diagnosticians in 1958 (later the 

AAVLD), there has been persistent interest in standardizing nomenclature, laboratory 

protocols, and informatics to improve animal and public health (Carter & Smith, 2021). 

Initial investigations in the 1960s into mainframe-based veterinary data retrieval 

established the foundational architecture for modern veterinary informatics systems. Despite 

considerable advancements, the absence of comprehensive standardization persists, 

underscoring the ongoing need for contemporary initiatives. The progression of artificial 

intelligence reflects the broader trajectory of computer science, characterized by the evolution 

toward more abstract and expressive programming paradigms.The progression of artificial 

intelligence reflects the broader trajectory of computer science, evolving from assembly 

languages to contemporary tools such as Python (Brooks, 1975; Reeves et al., 2024). 

Where early programming required meticulous attention to low-level syntax, 

contemporary generative AI enables intuitive human–computer interaction through natural 

language.This “prompts-first” paradigm makes AI accessible to novice learners and aligns 

directly with the way veterinary practitioners engage with clinical reasoning and decision- 

making. In modern veterinary education, especially within epidemiology, diagnostic imaging, 

and precision medicine, subfields of AI are being integrated into core practice. Machine 

learning models facilitate epidemiological forecasting and predictive analytics; speech 

recognition technologies support hands-free clinical examinations; image classification 

algorithms improve the interpretation of radiographic images; and natural language processing 

(NLP) technique's structure unformatted clinical narratives for enhanced data utility. 

Collectively, these systems emulate critical phases of clinical reasoning, encompassing 

anamnesis, data integration, diagnostic formulation, and individualized treatment planning 

(Riege et al., 2020). 
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The initial objective of this study is to critically assess both current and emerging applications 

of Artificial Intelligence (AI) within veterinary medicine, with particular emphasis on its roles in 

diagnostic imaging, clinical decision support systems (CDSS), epidemiological surveillance, and 

pharmacotherapeutic innovation. Specifically, this research seeks to: 

-Analyze the contribution of ML, DL, and NLP to improve diagnostic accuracy and optimizing 

clinical workflows in veterinary practice. 

-investigate the integration of AI-driven technologies in predictive diagnostics and 

epidemiological surveillance within veterinary practice. 

-Investigate the application of wearable technologies and connected devices for continuous 

monitoring of physiological and behavioral parameters in animal health management. 

-Assess the impact of artificial intelligence (AI) on pharmacological innovation, with emphasis 

on in silico drug modeling and the prediction of antimicrobial resistance (AMR) patterns. 

-Examine the prevailing challenges and prospective developments associated with AI 

implementation in companion and production animal healthcare, with precise attention to 

infrastructural, regulatory, and ethical barriers in rural and resource limited environments. 

This objective aligns with the wide aim of promoting evidence-informed, data-centric, 

and technologically included methodologies within contemporary veterinary context . 
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CHAPTER I : FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE 

 

I.1. Breakdown of Key AI Subfields in Veterinary Practice 

 

I.1.1. Machine Learning (ML) 

 

I.1.1.1. Introduction to Machine Learning in Veterinary Science 

 

ML forms one of the fundamental core pillars of AI, with notable implications in 

veterinary biomedical sciences due to its capacity to refine diagnostic sensitivity and Validity 

through repetitive learning from large-scale clinical datasets. This capability is particularly 

evident in interpretation of imaging and laboratory analysis, where ML models can be trained 

on archived radiographic images, hematobiochemical profiles, or cytological slides to improve 

the precesion of disease detection. For example, supervised learning algorithms have been 

employed to assist in identifying pulmonary consolidation in canine thoracic radiographs and 

in distinguishing hemoparasites on microscopically stained blood films. 

This regular data driven optimization enables more objective clinical decision making, 

supports symptom manifestation surveillance, and contributes to Unifying diagnostic protocols 

across practices with variable technical capacity. (Szlosek et al., 2024) 

I.1.1.2. Structuring and Interpreting Veterinary Clinical Data 

 

Veterinary clinical data may exist in different structural variants, distributed from 

structured datasets, such as complete blood counts (CBC), serum biochemistry profiles, or 

labeled diagnostic imaging (thoracic radiographs), to semi-structured information, including 

clinical case records, evolution sheets, prescription logs, or periodic follow-up observations 

during herd health monitoring. 

These data types constitute a fundamental part to both companion and animal production 

practice. Their correct interpretation, particularly when aided by artificial intelligence (AI) 

systems, augment diagnostic accuracy, ensures continuity in therapeutic protocols, and supports 

efficient surveillance of zoonotic and production-limiting diseases. as illustrated in figure 1 

(Szlosek et al., 2024) 

I.1.1.3. Learning Paradigms: Supervised vs. Unsupervised ML in Practice 

ML, a foundational subfield of artificial intelligence (AI), equips computational systems 

with the capacity to learn autonomously from clinical and epidemiological data, Augmentin 
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effectiveness over time without Demanding Detailed programming. In contrast to rule-based 

systems diagnostic approaches Controlled by fixed Regulation Derived from Prescribed 

methodologies, ML algorithms Adjust In real time by Recognizing statistical patterns, 

correlations, and Emerging patterns within Elaborate Data collections. 

This Versatility Supplies ML especially Pertinent to current veterinary clinical contexts 

, In the setting of the Heterogeneity of clinical presentations and environmental Factors criteria 

flexible, Statistical Validated corrective measure Procedures. Notably, supervised ML has 

demonstrated strong utility in veterinary clinical assessment , a radiological visualization is 

cornerstone of the Algerian veterinary curriculum, primarily in thoracic and abdominal 

radiology. Supervised learning models are taught to recognize patterns using labeled datasets, 

such as Classified thoracic radiographs, supporting them to detect pathological conditions 

Consisting of lobar pneumonia, cardiomegaly, and bronchial thickening with high resolution . 

These systems Replicate the diagnostic deductive logic of a specialized veterinarian, 

Providing clinical decision support in regions where specialist interpretation is restricted , 

specifically several rural wilayas. For example, a supervised ML model taught on canine 

thoracic X-rays is designed to automatically distinguish congestive heart failure key factors, 

increase diagnostic robustness and reducing cross observer fluctuation (Appleby & Basran, 

2022). 

Figure 01: Schematic Illustrating Machine Learning Integration in Veterinary Diagnostics 

adapted and illustrated by the author from Appleby & Basran (2022). 
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I.1.1.4. Unsupervised Algorithms for Herd Health and Early Disease Detection 

 

In addition, unsupervised ML techniques serve essential roles in herd health monitoring 

and species group medicine domains emphasized under the herd medicine "médecine de 

troupeau » ( approach in Algerian veterinary training. These algorithms operate on unlabeled 

datasets to Detect Latent patterns, cohorts, or anomalies that may occur prior to clinical 

detection , we have k-means clustering is unsupervised ML algorithm that for example in 

subclinical mastitis within dairy herds group milk samples based on somatic cell count (SCC) 

data from bulk milk tanks. This allows the detection of subclinical mastitis in cows that do not 

yet show overt symptoms then classify herds into risk categories ( low, moderate, high Risque) 

for early optimized intervention meanwhile monitoring the effectiveness of preventive 

strategies by tracking shifts between clusters over time, there is a valuable solution for 

identifying disease emergence in structured animal populations such as hierarchical modeling 

which is a statistical approach used to analyze data that is structured in nested or grouped 

formats, such as animals within herds, herds within farms, or farms within regions , allowing 

veterinary epidemiologists to identify early signs of cryptosporidiosis outbreaks in neonatal 

small ruminants by classifying data from farms, current time period, or age group. 

This classification enable veterinarians to detect changes from baseline morbidity levels. 

If multiple flocks exhibit an unusual increase in gastrointestinal symptoms and oocyst presence 

across several time points from stool test, the model can flag a risk a probable cryptosporidiosis 

outbreak before clinical signs are widespread. Such function are invaluable in supporting 

disease surveillance and maintaining productive,once these clusters are formed, veterinarians 

can focus preventive actions on high-risk subgroups disease-resilient livestock systems whole 

avoiding economic lose (Basran & Appleby, 2022). 

I.1.1.5. Diagnostic Modeling: Algorithm-Specific Applications 

 

To achieve these outcomes the choice of algorithm is closely aligned with the nature of 

the data and the diagnostic or decision making objective. For example, Support Vector 

Machines (SVMs) are widely used for disease classification. 

These models constructs a decision-separating surface within the feature space to 

differentiate between the categories that separates clinical cases into different categories based 

on input features. For instance, in a diagnostic scenario involving hematological markers 
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(leukocyte counts, erythrocyte indices), an SVM could be trained to distinguish between 

infectious anemia and immune-mediated hemolytic anemia in dogs. 

The model learns which combinations of variables best destinguish one diagnosis from 

another, allowing for the most precise prediction in new cases , Random Forests, an ensemble 

learning technique, are highly useful when managing high dimensional, multi-variable data a 

common challenge in veterinary diagnostics. For example, when interpreting comprehensive 

biochemical profiles in equine colic cases, a Random Forest model can analyze multiple 

parameters (such as lactate, electrolyte levels, hematocrit) simultaneously to anticipate 

outcomes such as the need for surgical intervention. 

The model uses multiple decision trees, each trained on a random subset of features, and 

aggregates their outputs for a reliable prediction , Neural Networks are the foundation of deep 

learning and excel in processing high dimensional imaging data. In veterinary radiology, 

convolutional neural networks (CNNs) a specialized type of neural network can analyze 

thoracic radiographs or abdominal ultrasound images to detect pathologies like cardiomegaly 

or hepatic masses. 

These networks automatically learn which visual features (edges, textures, shapes) 

correlate with disease progress , significantly enhancing diagnostic efficiency, notably in 

resource restricted settings , Principal Component Analysis (PCA) is not a predictive model but 

a Reduction in variable complexity technique. It is especially valuable in summarizing complex 

clinical datasets, like in the case of histopathological analysis, PCA can reduce hundreds of 

measured cellular factors , such as nuclear size, staining intensity, and cytoplasmic ratio , into 

a smaller number of principal components that preserve most of the varity . These components 

can then be used to stratify tumor types or stages with high clarity and decrease computational 

load (resource utilization).Overall , these algorithms form the technological core of many 

veterinary AI applications, from digital pathology and diagnostic imaging platforms to herd 

health surveillance systems. They support veterinarians in Automated Case Prioritization, 

enhance diagnostic precision, and facilitate real-time, data-driven decision-making a Paradigm- 

shifting in both individual animal care and populationlevel management. (Szlosek et al., 2024) 
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Figure 02 : This schematic demonstrates supervised (top) and unsupervised (bottom) learning 

approaches in veterinary radiology. In supervised learning, labeled radiographic images are 

used to train an AI model to classify new inputs. In contrast, unsupervised learning groups 

unlabeled images based on shared features. Adapted from Appleby & Basran (2022). 

I.1.2. Deep Learning (DL) 

 

I.1.2.1. Principles of Deep Learning and CNNs in Veterinary Imaging 

 

DL an Advanced subfield of ML, is characterized by its use of artificial neural networks 

(ANNs) composed of multiple Successive processing units that simulate the inspired by 

processing structure of the biological nervous system. 

These multilayered networks enable DL algorithms to autonomously extract complex 

patterns from multivariate data of biomedical data, thereby supporting advanced decision 

making without predefined rules. 

Algorithmic such as Convolutional Neural Networks (CNNs) represent the principal 

deep learning architecture applied to diagnostic imaging. CNNs are specifically engineered to 

process and interpret spatial hierarchies in two-dimensional (2D) ( standard X-rays) and three- 
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dimensional (3D) formats ( CT scans), such as thoracic radiographs, ultrasonography scans, or 

computed tomography (CT) datasets. (Cheng et al ., 2021) 

 

I.1.2.2. Application of CNNs in Small Animal Radiology and Internal Medicine 

 

These networks utilize successive convolutional filters to identify low- to high level 

patterns ranging from anatomical borders to pathological indicators , mimicking the staged 

analysis performed by a veterinary radiologist , in small animal internal medicine, CNNs trained 

on annotated thoracic radiographs have demonstrated proficiency in detecting: Alveolar and 

interstitial opacities indicative of lobar pneumonia Pleural effusion and bronchial wall 

thickening, common in chronic bronchitis and neoplastic infiltration . 

These systems are trained using large, labeled imaging datasets where each image is 

pre-categorized by experts according to diagnostic findings. Through repetitive optimization 

using gradient-based learning of weight matrices across layers, CNNs learn to associate 

radiographic features with specific pathological conditions, improving accuracy of the outcome 

over time (Deekonda , 2024). 

I.1.2.3. Radiographic Interpretation and Enhancing Rural Practice 

 

Importantly, this eliminates the need for the manual steps, these networks are designed 

to automatically scan and learn which parts of an image are most important (regions of interest, 

or ROIs : lesion , tumor mass , area of increased radiodensity , cardiac silhouette) for identifying 

a particular disease or abnormality. 

This algorithm proves particularly effective for veterinarians who have limited access 

to board certified radiologists or high case throughput CNNs facilitate automated triage and 

image interpretation, ensuring timely interventions. This is particularly critical in emergency 

and critical care units, where diagnostic latency can affect prognosis. (Appleby & Basran, 

2022) as demonstrated in the figure 03 . 



 CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE  

9 / 53 

 

 

 

 

Figure 03: Illustration of deep learning applications in veterinary diagnostic imaging, 

highlighting pattern recognition, image classification, and automated interpretation (Appleby 

& Basran, 2022). 

Moreover, DL tools help standardize interpretive accuracy across practitioners, 

supporting uniform clinical decision-making regardless of geographic disparities in veterinary 

infrastructure, a point where it is relevant in Algerian rural wilayas or field practice scenarios. 

By replicating the diagnostic reasoning processes characteristic of domain experts, deep 

learning through CNNs transforms veterinary imaging into a digitally enhanced diagnostic 

discipline. These systems improve efficiency in routine and emergency care but also solidify 

educational outcomes for veterinary students by enabling AI-driven visual diagnostics. As 

highlighted by Appleby and Basran (2022), DL does not replace clinical expertise; contrary, 

it strengthens it through evidence-based image analysis. 

I.1.3. Natural Language Processing (NLP) 

 

I.1.3.1. Structuring the Unstructured: From Clinical Narratives to Computable Data 

 

NLP is a subfield of AI that Addresses on enabling computational systems to interpret, process, 

and generate human language. Ias for vet filed settings, much of the data generated, such as 
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anamnestic reports, clinical examinations, operative summaries, and treatment protocols exists 

in unstructured textual form. Often these unstructured datasets are rich in clinical relevance but 

are typically underutilized due to their incompatibility with traditional algorithmic processing 

methods , NLP enable us to convert those documents into structured, searchable, and analyzable 

data formats, enabling more efficient retrieval, case indexing, and diagnostic decision support 

(Hossain et al., 2023). 

 

I.1.3.2. Linguistic Processing Steps in Veterinary NLP 

 

The system primarily work based on functions through a series of linguistic and 

computational steps that transform unstructured veterinary text into structured, analyzable data. 

The process begins with tokenization, where clinical texts data , such as anamnesis or 

examination notes , are broken down into individual units like words or sentences, allowing the 

system to handle and deduce language efficiently. Next, Named Entity Recognition (NER) 

recognize and extracts specific clinical elements, including anatomical structures "renal cortex", 

physiological conditions tachycardia", or disease names "canine parvovirus". Following this, 

Part of Speech Labeling assigns grammatical categories ( such as noun, verb, adjective) to each 

word, enabling the system to understand how terms function in data information . Finally, 

Decoding linguistic input into formal representations connects these identified entities to 

formalized veterinary ontologies such as SNOMED-CT Veterinary Extension, facilitating 

uniform clinical coding, interoperability, and precise data retrieval (Zhang et al., 2023). 

 

I.1.3.3. Clinical Applications 

 

Through these layered processes, NLP enables automated case indexing, diagnostic 

support, and epidemiological surveillance by converting free text records into structured 

formats suitable for computational analysis. For veterinary practices it can be used in Case 

Retrieval: by facilitating the rapid extraction of historical patient records that align with specific 

diagnostic criteria. For instance, querying all feline diagnosed with hypertrophic 

cardiomyopathy can be accomplished efficiently, supporting retrospective studies next reduce 

error By converting unstructured data such as handwritten notes or dictated clinical narratives 

into standardized digital formats, this automation helps diminish risks associated with 

misinterpretation and documentation errors also can help us with therapeutic monitoring by 

analyzing language patterns across patient records to detect signs of therapeutic failure, for 

example, repeated references to "lameness" in equine medical logs may indicate an inadequate 
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response to treatment, Facilitating the continuous evaluation of treatment protocols, while 

monitoring pharmacological usage to ensure compliance with best practices and prevent 

potential misuse (Venkataraman et al., 2020) . 

 

I.1.3.4. NLP for Epidemiological Surveillance and Zoonotic Outbreak Detection 

 

Furthermore, its most promising application lies in the domain of epidemiological intelligence. 

The dynamic incorporation of NLP technologies into disease surveillance systems improving 

the automated recognition of terminology indicative of zoonotic or reportable conditions , such 

as references to "suspected leptospirosis." This capability significantly contributes to the 

timelier identification of potential outbreaks and strengthens biosecurity measures through 

more effective and strategic resource deployment (Aslam et al., 2023). 

 

I.1.3.5. Real-Time Deployment in High-Volume Veterinary Settings 

 

In high volume veterinary hospitals managing hundreds of clinical cases monthly , NLP 

systems play a transitional role in extracting and analyzing unstructured data from clinician 

notes. For instance, during a suspected outbreak of canine distemper virus, an NLP algorithm 

can autonomously scan free-text medical records to identify keywords such as “ocular 

discharge,” “myoclonus,” or “seizure,” subsequently flagging relevant cases for review and 

prioritizing them for laboratory validation focusing on those exhibiting the most indicative 

markers of high priority pathological conditions. 

This real time data summarize not only facilitates early outbreak detection but also 

improve diagnostic precision and supports timely epidemiological responses. By automating 

the identification of clinically significant details within narrative records, NLP contributes to 

streamlined clinical workflows and fosters objective evidence based decision making. 

In the Algerian veterinary context where field based reporting and structured medical 

documentation are integral to both herd health and companion animal practice NLP stands out 

as a scalable solution that strengthens diagnostic efficiency and reinforces the continuity of care 

across diverse clinical environments, as Basran and Appleby (2022) affirm, NLP strengthens 

veterinary medicine by integrating textual intelligence bridging the gap between clinical 

narrative and cognitive logic. 
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Figure04 : A schematic representation of the NLP workflow in veterinary contexts, illustrating 

data collection, processing, and clinical application. Adapted from Appleby (2022). 

I.2. Clinical Decision Support Tools 

 

I.2.1. Functional Scope and Clinical Relevance of CDSTs 

 

Clinical Decision Support Tools (CDSTs) represent a critical interface between 

veterinary expertise and AI , facilitating timely data informed guidance that improve diagnostic 

outcomes , optimizes therapeutic protocols , and synchronize in clinical decision making. 

Including in algorithmic reasoning, these systems operate by diffusing structured and 

unstructured patient data including electronic medical records (EMRs),such as canine cardiac 

evaluation ( Rule-Based Engine / Decision Tree) done in the case of a middle aged Labrador 

Retriever presented with exercise intolerance and a subtle systolic murmur , that include 

auscultation examination data and echocardiographic measurements (such as left atrial 
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enlargement and fractional shortening) were entered into the EMR. The CDST analyzed these 

structured data and cross referenced them with cardiomyopathy protocols (Lee et al., 2025). 

I.2.1.1. Integrated Decision-Making in Companion Animal Care 

 

It proposed dilated cardiomyopathy (DCM) as the leading differential diagnosis, 

recommended further diagnostic monitoring with a Holter ECG , next the Feline Chronic 

Kidney Disease Tracking (Data Integration) a senior domestic shorthair cat with stable Stage 2 

CKD (Supervised Learning Model + NLP ) experienced decreased appetite and an increase in 

serum creatinine concentrations. The CDST summarized laboratory results (elevated BUN, 

creatinine, low urine specific gravity) with free text clinical notes such as “recent vomiting” 

and “reduced food intake.” Based on these information , the system Designated probable 

progression to IRIS (International Renal Interest Society) Stage 3, advised monitoring for 

metabolic acidosis, and recommended dietary adjustments along with subcutaneous fluid 

therapy .(Henry et al., 2024) 

I.2.1.2. CDSTs in Herd-Level Surveillance and Population Medicine 

 

In the case of Ruminant Disease Surveillance ( NLP + Unsupervised Learning / Data 

Mining) In a mixed animal practice, an increased incidence of neonatal lamb diarrhea was 

recorded in the EMR. The CDST integrated geotemporal case data with vet notes referencing 

clinical signs like “lethargy,” “scours,” and “poor colostrum intake.” It generated an alert for a 

potential cryptosporidiosis outbreak, advised herd-level fecal screening, and recommended 

biosecurity measures aligned with OIE guidelines (Akinsulie et al., 2024). 

I.2.1.3. Technical Architecture and AI Integration in CDSTs 

 

From a technical perspective, CDSTs operate through the integration of ML, NLP, and 

Predefined rule based engines to promote data informed clinical reasoning. These systems 

analyze structured clinical inputs such as patient signalment, physical exam findings, and 

laboratory results , alongside unstructured data from clinical narratives or historical case 

records. The technical axis function of a CDST is not just data storage, but intelligent 

interpretation: identifying clinically meaningful patterns, classifying differential diagnoses, and 

recommending targeted interventions in current time. For instance, Fox et al. (2021) 

demonstrated the implementation of an AI-augmented CDST in the management of canine 

idiopathic epilepsy. In this model, the system summarized a range of neurologic parameters 
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such as episodes of generalized seizures, behavioral changes , and proprioceptive deficits , to 

signal idiopathic epilepsy as a primary differential. It then proposed personalized management 

recommendations. By aligning its suggestions with published treatment protocols and 

longitudinal patient data, the system effectively functioned as a digital extension of veterinary 

clinical judgment, rather than a replacement. 

I.2.1.4. Advanced Functions: Medication Safety, Prognostics, and Alerts 

 

Such systems are particularly valuable in streamlining diagnostic approaches for 

multifactorial pathologies, reducing clinician fatigue, and ensuring consistent adherence to best 

performance in evidence based clinical practice. Furthermore, as veterinary CDSTs mature, 

their utility expands into sophisticated tasks such as medication interaction checks, outcome 

prediction modeling, and Dynamic alert mechanisms responsive to case specific parameters 

during clinical data integration (Fox et al., 2021). 

I.2.1.5. Interoperability and Ethical Considerations in Veterinary CDSTs 

 

A critical factor in the implementation of CDSTs into clinical practice is the system’s 

ability to function compatibly alongside prior frameworks such as Veterinary Practice 

Management Systems (VPMS). Interoperability facilitates seamless data exchange between AI 

based diagnostic frameworks and EHRs, promoting coherent system integration ,diagnostic 

databases, and patient history logs, enabling a smooth exchange between structured and 

unstructured data. This technical alignment is vital for real-time decision support and for 

decreasing administrative tasks that could otherwise hinder clinical efficiency. Moreover, 

architectural transparency is central to the ethical deployment of CDSTs. Akinsulie et al. (2024) 

emphasize the necessity of employing "white-box" models systems in which the decision 

making logic is understandable, auditable, and traceable by partitionner. 

This stands in oppsite to "black-box" AI systems, which, while potentially powerful, 

obscure their internal reasoning processes, thereby restricting the clinician’s ability to check or 

contest system created recommendations. In veterinary field , where treatment outcomes 

primarley affect both animal welfare and public health (particularly in zoonotic emergence or 

herd level conditions), assuring such transparency ensures that practitioners can critically assess 

and validate AI-generated suggestions (Akinsulie et al., 2024; Fox et al., 2021). 
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Figure05 : Schematic representation of Clinical Decision Support Tool (CDST) integration 

with Electronic Medical Records (EMR) for disease prediction and management, including use 

cases such as Dilated Cardiomyopathy (DCM). Adapted and illustrated by the author from 

Akinsulie et al. (2024) and Fox et al. (2021). 

I.2.2. Imaging Techniques and Data Processing 

I.2.2.1. AI-Driven Image Quality Assessment and Optimization 

To explore the internal operational and significance of AI in clinical relevance 

diagnostic imaging, it is imperative to analyze the procedural logic of how AI systems operate 

beyond the diagnostic they produce . Unlike the traditional software tools that rely on pre 

programmed logic, AI particularly through ML and DL , employs data centric models that adapt 

dynamically to new input patterns. This adaptability is particularly valuable in the context of 

veterinary imaging, where interspecies anatomical and pathological diversity between species 

adds complexity to diagnostic interpretation. DL architectures often employ CNNs, which are 
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designed to independently analyze unprocessed imaging inputs through successive layers of 

feature extraction. 

In veterinary imaging, their distinct advantage lies in their capacity to localize and 

discriminate subtle variations in radiographic presentations across species without the necessity 

for predefined manual feature engineering. where a CNN-based algorithm was developed to 

automatically evaluate the quality of canine thoracic radiographs. This system interprets 

processes digital radiographic inputs in real time, evaluating parameters such as contrast, 

anatomical visibility, and positioning, to determine whether an image meets diagnostic criteria. 

Once substandard images are detected, the system delivers to clinician's immediate feedback, 

allowing for adjustments repositioning or exposure settings , thus maintaining radiological 

standards while contributing to reducing unnecessary radiation exposure for both patient and 

operator optimizing workflow effectively . This automated cycle control loop illustrates how 

ML links the gap between image acquisition and interpretation (Krupiński et al., 2023). 

 

I.2.2.2. Diagnostic Pattern Recognition in Veterinary Imaging 

Further broadening the utility of AI in veterinary radiology, Burti et al. (2024) Critically 

examine both the strengths and constraints of algorithm supported diagnostic performance. 

Their study emphasize that while CNNs are adept at recognizing subtle pulmonary or 

orthopedic pathologies, especially in canine and feline thoracic imaging, the interpretive 

precision of these models is strongly influenced by the heterogeneity and integrity of dataset 

while training the model. 

I.2.2.3. Algorithmic Classification Techniques in Sonography and Cardiology 

Parallel to CNNs, other algorithmic methodologies bolster the broader diagnostic 

ecosystem. Support Vector Machines (SVMs) are applied in classifying sonographic findings 

(ultrasonographic patterns), notably when distinguishing neoplastic from non-neoplastic lesions 

in abdominal organs. SVMs achieve this by constructing hyperplanes in high dimensional 

space, informed by structured parameters like lesion shape, echotexture, and vascularization 

indices. Likewise random Forests, by contrast, are a combination of learning methods 

particularly suitable for integrating heterogeneous clinical parameters. In veterinary cardiology, 

these models can synthesize variables such as echocardiographic chamber measurements, NT- 

proBNP concentrations, and patient demographic data (breed or age) to predict congestive heart 

failure with high specificity. This resilience arises from the model’s internal averaging 
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mechanism, which counters the risk of overfitting and increase reliability across diverse patient 

cohorts (Burti et al., 2024). 

I.2.2.4. Dimensionality Reduction and Workflow Integration in Pathology and PACS 

Moreover, Principal Component Analysis (PCA) serves as an effective method for 

reducing the dimensional complexity of large scale morphological datasets. Within veterinary 

pathology, PCA improve cytological or histopathological profiles by identifying diagnostically 

dominant features such as granularity, nuclear size, or mitotic index which are critical in 

identifying mast cell tumors, lymphoma subtypes, or metastatic behavior in biopsy samples. 

Noteworthy, these algorithmic systems are now being incorporated into Picture Archiving and 

Communication Systems (PACS). Here, AI models not only automate image sorting and 

annotation but also prioritize cases according on clinical urgency an essential feature in 

academic or referral hospitals institutions with shortage of trained radiological specialists (Lee 

et al., 2024). 

 

Figure 06 : Illustration of AI applications such as Convolutional Neural Networks (CNN) and 

Principal Component Analysis (PCA) in veterinary imaging, including biomarkers like NT- 

proBNP (N-terminal pro B-type Natriuretic Peptide). Adapted and illustrated by the author from 

Burti et al. (2024). 
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Chapiter II: AI in veterinary diagnostics 

 

II.1. Automated Analysis of Constulation Data and Finding 

 

II.1.1. Deep Learning Models for Structured Clinical Data Interpretation 

 

As Miotto et al. (2018) explain, DL models, especially those structured as multilayered 

neural networks, are uniquely suited to manage big scale data common in healthcare, such as 

hematological indices, biochemical markers, and microbiological culture results. These models 

operate by integrating structured datasets, complete blood count (CBC) parameters, serum 

creatinine levels, urinalysis reports and learning latent patterns that correlate with precise 

pathological states. For instance, a recurrent elevation in neutrophils, combined with 

hyperglobulinemia, may activate a trained algorithm to recomend differential diagnoses such 

as chronic bacterial infection or immune mediated inflammation, prompting earlier clinical 

intervention. 

within veterinary practice , such automation reduces reliance on manual interpretation, 

particularly for early detection of deviations from species specific physiological studies . This 

is especially advantageous in large dataset clinical settings or rural field operations where 

veterinary labor is constrained. Over time, with the assimilation of additional subject specific 

features , these models in a recurrent manner refine their predictive accuracy a concept known 

as model retraining or reinforcement learning thereby supporting with validated findings care 

(Akbarein et al., 2025). 

II.1.2. Natural Language Processing in Veterinary Record Mining 

 

Furthermore, as emphasized by Hur et al. (2020), NLP is essential in retrieving 

clinically relevant information from unstructured textual records such as anamnesis notes, 

SOAP (Subjective, Objective, Assessment, Plan reports, or post-operative summaries. In their 

study they analyzed over 4.4 million veterinary consultations records from Australia (2013– 

2017). Their model identified 595,089 antimicrobial prescriptions, equating to 145/1,000 

canine and 108/1,000 feline consultations receiving antibiotics,from these data NLP enabled 

immediate recognition of antimicrobial prescribing evolving profiles, contributing to finding 

from 1000 consultation 38 canine and from 1000 consultation 47 feline visits involved high 

importance antimicrobials , raising stewardship concerns. 
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The common drugs inclue cefovecin in cats and amoxicillin–clavulanate in dogs, while 

polymyxin B was the prevalent topical agent frameworks in accordance with the One Health 

approach. 

II.1.3. Predictive Trend Analysis for Chronic Disease Management 

 

At the implementation level, a clinician utilizing an data centric automated solution 

might incorporate serial biochemical information for a canine patient with renal compromise 

serum creatinine, BUN, urine specific gravity and receive a predictive tendances analysis 

recomended progression toward chronic kidney disease. Such forsight, when aligned with 

clinical observations and ultrasonographic findings, strengthen the diagnostic hypothesis and 

enhance treatment planning.as demonstrated in the figure 07 below (Renard et al., 2021). 

 

 

Figure 07 : illustration show how Enhancing Veterinary care with AI tools improving 

diagnostic accuracy, treatment personalization, and health monitoring in veterinary practice. 

Adapted and illustrated by the author from Akbarein et al. (2025) and Miotto et al. (2018). 

 

II.2. Artificial Intelligence in Predictive Diagnostics 

 

II.2.1. Transitioning from Reactive to Predictive Veterinary Medicine 

 

From reactive to predictive diagnostics. This evolution aligns closely with the principles 

of preventive health management and precision veterinary medicine, especially in the context 

of emerging global challenges such as parasite control. Within biological and veterinary 
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standpoint, predictive diagnostic systems rely on the integrating and processing of high- 

dimensional data inputs, including clinical history, physiological biomarkers, laboratory results 

( hematology and biochemistry omics ), and, increasingly, digital imaging and parasitological 

evidence. These datasets serve as the foundation for training ML models that can detect 

pathophysiological patterns preceding overt clinical disease (Pijnacker et al., 2022). 

 

II.2.2. Deep Learning Applications in Veterinary Parasitology 

 

An exemplary application of DL in veterinary parasitology is demonstrated by the 

Vetscan Imagyst® platform, validated by Steuer et al. (2024), which integrates a convolutional 

neural network (CNN) specifically trained for high resolution image recognition in fecal 

diagnostics. 

 

In this study, the system autonomously analysed equine fecal samples to detect and 

differentiate helminth ova particurally strongyles and Parascaris spp with a sensitivity ranging 

from 88.9% to 100% and specificity between 91.4% and 99.9%, depending on egg 

concentration levels. This level of diagnostic accuracy was shown to rival that of experienced 

parasitologists, particularly in samples with low egg counts (5–200 EPG), where the coefficient 

of variation was markedly reduced compared to manual McMaster techniques. 

II.2.3. Technical Workflow of CNN-Based Diagnostic Platforms 

Functionally, the CNN analyzes digitized stained fecal specimens by retrieving and 

learning morphological patterns such as egg shape, shell thickness, and internal granularity. 

The model segments the image, isolates individual ova, and classifies them based on learned 

phenotypic features without the need for manual pre-processing. This allows 2024, mediate, 

reproducible quantification of parasite load, supporting data centered decisions in parasite 

control (Xu et al., 2024). 

II.2.4. Clinical and Epidemiological Advantages in Field Settings 

 

From a veterinary and One Health perspective, such platforms offer several clinical 

advantages. First, they facilitate individualized targeted endoparasite control interventions by 

accurately classifying animals based on parasite burden, thereby decreasing unnecessary 

anthelmintic administration and slowing resistance profression. 
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Second, by integrating diagnostic automation into routine herd surveillance, they enable 

early intervention in clinically predisposed populations, contributing to biosecurity and animal 

welfare. Third, when deployed in resource constrained or high throughput settings, they 

democratize access to parasitological expertise by standardizing diagnostic output across users. 

Thus, the Vetscan Imagyst® system exemplifies how AI-powered tools can bridge the gap 

between laboratory precision and field applicability, redefining parasitic diagnostics as both a 

clinical and epidemiological instrument (Steuer et al., 2024). 

 

Figure 08: Application of predictive modeling to enhance diagnostic accuracy and decision 

making in veterinary systems. Adapted and illustrated by the author from (Steuer et al., 2024). 
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CHAPTER III: CONNECTED DEVICES AND ANIMAL MONITORING 

 

III.1. Mechanisms and Applications of Wearable Technologies 

 

III.1.1. Sensor Types and Operating Principles in Veterinary Wearables 

The advancement of wearable technologies in veterinary medicine, as articulated by 

(Zhao et al. 2025), marks a significant evolution in the clinical monitoring of animal health. 

These connected, devices integrated with biosensing components provide continuous, non- 

invasive surveillance of physiological and behavioral biomarkers, improving a transition from 

episodic clinical evaluations to Instantaneous, longitudinal health management. From the 

perspective of veterinary informatics and applied AI, this represents a foundational shift toward 

early intervention oriented, precision-based medicine in both companion animal and large 

animal husbandry system. Wearable systems settings collect biometric and ethological data 

including heart rate variability, respiratory rate, core body temperature, ambient activity levels, 

Locomotor biomechanics, rumination time, and even feeding behaviors. These data are 

acquired through multimodal sensor technologies have become instrumental in Current 

practices in digital veterinary health surveillance, each offering unique Observations into 

animal physiology and behavior. 

 

For exampel , Accelerometers, which are tri-axial sensors capable of detecting motion 

along the X, Y, and Z axes, allow for detailed classification of behaviors such as walking, 

resting, or limping. These are particularly valuable in monitoring post operative recovery and 

detecting locomotor abnormalities. Gyroscopes likewise are Kinematic sensors that measure 

angular velocity how the animal’s body rotational movement along the transverse plane, pitch, 

and roll axes. (Unlike accelerometers, which track linear movement, gyroscopes capture 

rotational motion, aiding in the assessment of balance, orientation, and gait coordination.) they 

are Incorporated in wearable devices (collar or limb sensors) and often paired with 

accelerometers to generate a comprehensive biomechanical profile. Thermistors in addition, 

embedded in wearable devices such as ear tags or collars, are temperature sensitive resistors 

that detect Slight variations in surface body temperature, enabling early identification of febrile 

conditions such as mastitis or heat stress in livestock, often before clinical signs manifest. 

Photoplethysmography (PPG) which employs light based technology to calculate changes in 

blood volume, allowing for Sustained monitoring of heart rate and vascular perfusion. 



 CHAPTER III: CONNECTED DEVICES AND ANIMAL MONITORING  

23 / 53 

 

 

This method is particularly useful in neonatal or small species where traditional 

auscultation proves challenging. Infrared Thermography (IRT), is a non-contact imaging 

technique, captures and maps thermal radiation emitted from the body to detect areas of 

inflammation, stress induced hyperthermia, or vascular anomalies, making it well suited for use 

in herd level diagnostics and in animals where physical handling is restricted , integrated into 

collars, harnesses, or ear tag devices. The raw signals are Transformed into machine readable 

form and transmitted wirelessly via protocols such as Bluetooth (for companion animals), Wi- 

Fi (for high bandwidth clinical data), or LPWAN (for long range livestock monitoring) to cloud 

based platforms. There, AI algorithms like CNNs or RNNs process the data in real time to detect 

health anomalies, stratify behaviors, and support early disease detection. Owing to the 

continuous and voluminous nature of sensor derived physiological data, accurate interpretation 

necessitates the deployment of algorithmic processing mechanisms capable of immediate trend 

extraction and anomaly detection ML algorithms particularly supervised models such as 

random forests and SVMs are used to classify behavioral states and detect physiological 

anomalies (Chambers et al., 2021). 

 

III.1.2. Behavioral and Physiological Monitoring Using Wearable Sensors 

 

For instance, ML can differentiate between normal movement patterns and early 

lameness based on changes in stride frequency and symmetry in equine patients. A striking 

example is provided by Chambers et al. (2021), who utilized DL specifically, CNNs to classify 

canine behavior using a single collar-mounted accelerometer. Their model, trained on annotated 

datasets of canine activities (walking resting, scratching, shaking), achieved high accuracy in 

recognizing behavior in Field based practice settings. This exemplifies how DL can decode 

subtle kinetic patterns when paired with wearable accelerometers (motion detector), can 

accurately classify complex canine behaviors (scratching, licking, resting) by analyzing subtle 

kinetic data. 

These DL algorithms autonomously convert raw motion patterns into structured, 

interpretable outputs, enabling real-time, automated ethological assessments both in clinical 

practice and home environments. This technology enhances welfare monitoring and supports 

early assessments both clinical and at-home settings. Within the framework of clinical 

veterinary practice, such technologies demonstrate substantial utility in domains of medical 

management, notably in the surveillance of post-surgicalovery during inpatient care by 
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continuous tracking of body temperature and activity helps detect early signs of infection, pain, 

or surgical complications in dogs and cats. 

III.1.3. Applications in Reproduction, Welfare, and Stress Detection 

Likewise Reproductive management in ruminants: Wearables monitor rumination, 

mounting behavior, and changes in core temperature to detect estrus and optimize insemination 

timing, improving herd fertility outcomes. 

Also have shown a significant impact in Stress and welfare surveillance: In livestock, variations 

in locomotion patterns and heart rate are used as proxies for environmental or handling related 

stress, allowing for timely welfare interventions (Horváth et al., 2021) 

III.1.4. Toward Predictive and Individualized Veterinary Care 

 

The longitudinal nature of data captured enables veterinarians to Establish individualized 

baselines for each animal, a critical step in phenotype driven predictive modeling (that uses 

AI—especially supervised learning and deep neural networks, to identify patterns between 

observable clinical traits (like fever or gait changes) and disease risk. As explained by (Qi et 

al. 2024; Miotto et al. 2018). When integrated with EHRs, wearable data can fuel early warning 

systems that alert Anomalies to constructed physiological parameters facilitating preclinical 

detection of metabolic disorders, heat stress, or infectious processes. 

 

Figure 09: Wearable technologies in Veterinary medicine Illustrates the application of 

wearable devices for continuous physiological monitoring and health assessment in animals. 

Adapted and illustrated by the author from Chambers et al. (2021), Qi et al. (2024), and 

Miotto et al. (2018). 
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III.2. Monitoring of Behavior and Vital Signs 

 

III.2.1. Wearable Sensors for Companion Animal Behavior Recognition 

Sensor integrated monitoring systems are increasingly utilized to acquire both 

physiological (cardiac rhythm, temperature) and biomechanical ( movement related) data in 

veterinary settings. Captured metrics may encompass locomotor frequency, rest activity cycles, 

nutritional intake patterns, hydration related behavior, and micro motor anomalies suggestive 

of neurologic dysfunction. 

These streams data streams are obtained via devices such as triaxial accelerometers, 

inertial measurement units (IMUs), electrocardiographic modules, and thermal sensors, which 

are embedded in collars, harness systems, or subcutaneous instrumentation. Once acquired, the 

raw data is processed using ML and DL algorithms, which learn from labeled examples to 

automatically recognize patterns, behaviors, or anomalies relative to established baselines. For 

instance, (Chambers et al. 2021) illustrated that the inclusion of collar mounted 

accelerometers, when coupled with deep neural networks, could accurately stratify canine 

behaviors such as scratching, sniffing, and drinking. These fine-grained behavioral 

distinguishing it are often clinically relevance for example; iterative scratching might suspect 

atopic dermatitis or external parasitic ectoparasitic infestation thus enabling early therapeutic 

intervention. 

III.2.2. AI-Based Monitoring in Laboratory Animal Models 

 

In close laboratory environments, the use of AI-integrated sensor technologies has 

significantly increased the precision of behavioral analysis in small animal models. Notably, 

(Chen et al. 2022) illustrated the application of wireless IoT-based sensors in rodents to 

automatically stratify behavioral states such as resting, rearing, and ambulatory activity. 

Through the incorporation of advanced feature selection algorithms and imbalanced learning 

strategies, the system was able to precisely identify infrequent or subtle behaviors markers that 

may be indicative of early-stage neurological dysfunction, systemic stress responses. 

III.2.3. Postoperative and Orthopedic Monitoring in Small Animals 

 

In companion animal practice, wearable technologies notably those equipped with tri- 

axial accelerometers have become important tools for postoperative monitoring and long term 

orthopedic management. Following procedures such as cranial cruciate ligament repair or 
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fracture stabilization, these devices enable clinicians to quantitatively assess limb use, gait 

asymmetry, and mobility patterns by detecting motion over the X, Y, and Z axes . In opposite 

to in clinic assessments, which are time restricted and frequently influenced by environmental 

stress, data collected in home settings provide a more ecologically valid measure of recovery. 

AI-driven behavior stratifying models apply these movement data to recognize subtle 

deviations from normal locomotion, such as reduced weight bearing or altered stride frequency 

parameters associated of complications like implant failure or delayed healing. 

These data streams are transfered to cloud based platforms, allowing actuel time remote 

evaluation and enabling clinicians to personnalise analgesic regimens or adjust physiotherapy 

protocols rapidly. This system decreases reliance on subjective owner reports in anamnese 

when diagnoses and enhances the standardization and accuracy sof follow up care. particularly, 

accelerometry has proven utility in the case of feline orthopedic recovery, where clinical signs 

such as lameness or discomfort are frequently understated. By providing objective metrics for 

ambulation and limb loading, wearables support proactive, personalised rehabilitation planning. 

In (Chambers et al., 2021) . 

III.2.4. Precision Livestock Farming and Reproductive Monitoring 

 

Within the field of Precision Livestock Farming (PLF), the integration of AI-enabled 

wearable sensors such as smart collars and ear tag systems has transitioned herd health 

management by enabling ongoing, non-invasive monitoring of vital physiological and 

behavioral metrics. These technologies are particularly effective in the early detection of 

emerging conditions like in the case of subclinical mastitis an intramammary inflammatory 

condition without showing pronounced signs ,thermistors embedded in smart collars or ear tags 

detect localized increases of cutaneous temperature of the mammary gland. When this is 

assoaciated with decreased of rumination, often tracked via jaw movement sensors, AI models 

reconize these Faint anomalies and issue alerts for complementy examination for diagnostics 

like somatic cell count testing. 

This allows for timely intervention before productivity losses exacerbate . Similarly, 

Initial phase lameness, often due to hoof or joint pathologies, is detected through accelerometers 

that monitor Symmetry of limb motion, step frequency, and overall mouvement in three 

dimensions (X, Y, Z). Changes in stride regularity or prolonged inactivity intervals are 

interpreted by AI algorithms as Subclinical indicators of locomotor dysfunction, often emerging 
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prior to the clinical manifestation of overt lameness, Estrus detection, an essential element of 

reproductive efficiency, is enhanced through multimodal sensor input. Accelerometers capture 

restlessness and mounting behavior, while thermistors detect rhythmic fluctuations in core 

temperature. Gyroscopes and caudally affixed pressure sensing devices further validate 

standing heat. These converged datasets allow the AI system to accurate estimation of the 

optimal insemination period and notify herd breeders or veterinarians accordingly (James et 

al. 2024). Moreover, the integration of these data streams supports widen welfare and 

productivity outcomes. Thermal stress indices extracted from continuous temperature and 

behavior monitoring inform environmental adjustments such as adjusting ventilation or 

hydration regimes , to alleviate heat stress. By synthesizing movement (accelerometers), 

temperature (thermistors), posture (gyroscopes), and mounting behavior, the AI system 

constructs a contextual health profile for each animal. Ultimately, these AI-enabled PLF 

(Precision Livestock Farming) systems enhance diagnostic accuracy, reproductive planning, 

and herd management. They allow for individualized care within Extensive free range 

production systems and represent a shift toward a data driven, prospective model that promotes 

both productivity and animal welfare (James et al., 2024).as it demonstrated in figure 10. 

 

 

Figure 10 : Sensor applications in Veterinary and livestock management enabling real time 

monitoring and data driven decision making in animal health and husbandry. Adapted by the 

author from (Chambers et al., 2021; James et al., 2024). 
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III.3. Integration of AI in Animal Telemedicine 

 

III.3.1. AI-Integrated Telemedicine Platforms in Veterinary Care 

Within veterinary medicine, AI-including telemedicine platforms constitutes a 

significant development in remote clinical services, facilitating practitioners to mitigate animal 

health across a range of species and environments, especially in rural, high volume, or resource 

limited region (James et al., 2024; Ouyang, 2021). 

III.3.2. Data Infrastructure: Interoperability and Cloud-Based Storage 

 

The functional architecture of these platforms is initiated through the ongoing 

acquisition of biometric and behavioral features from wearable or environmental sensors such 

as rumination collars, thermistors, and accelerometers.Physiological and other behavioral 

parameters are wirelessly transmitted to cloud based databases, where they are harmonized 

using structured vocabularies like SNOMED-CT-Vet (Systematized Nomenclature of Medicine 

Clinical Terms for Veterinary Medicine). Thus promoting data interoperability across clinics, 

technologies, and geographic regions. (Ouyang, 2021) . Once the data are acquired, ML 

algorithms embedded within the system perform real time analysis by comparing individual 

animal metrics to herd level baselines and historical tendencies . 

III.3.3. Predictive Surveillance and Spatial Risk Modeling 

 

In addition, these platforms integrate geo tagged clinical records and environmental 

sensor data into veterinary telemedicine platforms represents a significant advancement in 

disease surveillance and outbreak forecasting. These systems not only track animal specific 

physiological and behavioral parameters but also associate them within spatial and temporal 

resolved and environmental frameworks, allowing for the prediction of localized disease risks. 

For exemple, in the population concentration in urban animal shelters, where airborne 

pathogens dessiminate rapidly, platforms equipped with GPS tagged data and instantaneous 

environmental monitoring such as humidity, ambient temperature, or ammonia density can be 

used to model the risk of Canine Infectious Respiratory Disease Complex (CIRDC). CIRDC is 

a multifactorial syndrome involving pathogens like Bordetella bronchiseptica, canine 

parainfluenza virus, and canine adenovirus, which are highly sensitive to air quality, 

ventilation, and crowding. By applying ML algorithms to converged inputs, a spike in coughing 

frequency from EMRs, increasing ammonia levels detected by ambient sensors, and high 
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animal turnover in a geo specific shelter, the system can declare a potential CIRDC outbreak 

before clinical cases rise significantly (Bhowmik, 2021) . 

 

III.3.4. One Health Integration and Public Health Implications 

 

These predictive foresight can then activate biosecurity alerts, guide ventilation 

management, and Steer vaccination or isolation protocols, Limiting pathogen dissemination. 

This multimodal, Prognostic surveillance model manifests the One Health approach, linking 

animal health data with environmental and epidemiological information relevant to public 

health. It facilitates Immediate decision support not only for veterinarians but also for public 

health authorities, promoting harmonized interventions to emerging zoonotic threats (Ouyang, 

2021 ; James et al., 2024). 

 

 

Figure 11: AI in Veterinary Telemedicine Illustrates the integration of AI in remote 

veterinary care, enhancing monitoring and management in diverse and resource limited 

settings.Adapted by the author from (Ouyang, 2021 ; James et al. 2024). 
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CHAPTER IV: PREDICTIVE ANALYTICS IN VETERINARY 

PHARMACOTHERAPY DEVELOPMENT 

 

IV.1. Machine Learning in Drug Development 

 

veterinary pharmacology through AI is being shifted from how therapeutics such as 

identifying, optimizying , and evaluating , notably in the face of rising zoonotic threats, 

antimicrobial resistance, and the complexity of species specific pathophysiology. the 

incorporation of ML algorithms into veterinary drug discovery offers a precise, data centric 

alternative to traditional linear pharmacological pipelines, allowing for both accelerated 

compound screening and enriched therapeutic targeting. 

In the context of precision veterinary pharmacology, AI offers powerful function 

analyzing complex biochemical and physiological parameters to enhance drug development 

and therapeutic decision making. One of it application lies in the use of chemical structure data, 

notably through SMILES (Simplified Molecular Input Line Entry System) strings and 

molecular fingerprints. 

IV.1.1. Smiles 

 

For the case of the SMILES is a formal representation schema that encodes a molecule’s 

structure into a single line of ASCII characters(ASCII : American Standard Code for 

Information Interchange) is a character encoding standard that represents text in computers and 

digital systems using a set of 128 characters including letters, digits, punctuation marks, and 

control characters ) , making it easily interpretable by both humans and ML algorithms. 

Each atom is represented by its chemical symbol ( "C" for carbon, "O" for oxygen), and 

bonds are Identified as special characters: single bonds are implicit or shown as "-", double 

bonds as "=", triple bonds as "#", and aromatic bonds often by lowercase letters. Parentheses 

indicate branches in molecular chains, and numbers signify ring closures.For example, the 

SMILES string for ethanol is "CCO", which express a two carbon chain with a terminal 

hydroxyl group (–OH). 
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Figure 12: Schematic Representation of the SMILES Encoding Workflow, Adapted and 

modified by the author from Qi et al. (2024). 

This format simplifies the input for cheminformatics models and enables algorithms 

particularly graph based DL systems to interpret the molecular graph as a sequence without the 

need for complex molecular drawing or file types like MOL or SDF (The MOL format encodes 

detailed structural information of a single molecule—such as atom coordinates, bond types, 

stereochemistry, and charge which supports molecular docking, toxicology prediction, and 

computational simulations essential in early-stage veterinary pharmacology (Capecchi, 

Probst, & Reymond, 2020). In comparison, the SDF format builds upon the MOL 

specification by allowing storage of multiple molecules alongside annotated descriptive data, 

including physicpochemical properties (Property , LogP (Partition Coefficient) , Solubility , 

pKa , Topological Polar Surface Area (TPSA) , pharmacological values ( MIC (Minimum 

Inhibitory Concentration) , IC₅₀ (Half-maximal Inhibitory Concentration) ,EC₅₀ (Effective 

Concentration) , Ki (Inhibition Constant), and species-specific therapeutic data. This makes 

SDF files indispensable for high throughput screening and ML based modeling, especially in 

developing species appropriate therapies and optimizing drug profiles across diverse animal 

populations (Qi et al., 2024). 

For exemple retrived from (PubChem, 2024) : 

Enrofloxacin : 

O=C(O)\C3=C\N(c2cc(N1CCN(CC)CC1) c(F)cc2C3=O) C4CC4 

Meloxicam : 

Cc1cnc(s1) N=C(C1=C(O)c2ccccc2S(=O) (=O) N1C) O 

 

IV.1.2 .Molecular fingerprints 

 

Molecular fingerprints are foundational computational tools in drug discovery, serving 

to represent the chemical structure of compounds as fixed length binary or numerical vectors. 

Unlike SMILES (Simplified Molecular Input Line Entry System) strings that encode molecular 
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structure as linear ASCII text, molecular fingerprints extract structural patterns such as 

functional groups, atom pairs, and ring systems into bit vectors that are computationally 

tractable for ML algorithms and similarity searches. Each bit in the fingerprint corresponds to 

a preestablished molecular descriptor; if the corresponding substructure is present in the 

molecule, the bit is set to "1", otherwise it remains "0". These descriptors are typically derived 

from the molecular graph parsed from 2D or 3D chemical structures (Capecchi et al., 2020). 

 

Figure 13: Molecular Fingerprint Generation Process Binary encoding scheme indicating the 

presence (1) or absence (0) of molecular substructures. Adapted and illustrated by the author 

from Capecchi et al. (2020). 

Within veterinary drug development, molecular fingerprints facilitate essential tasks 

including virtual screening, ligand receptor matching, toxicity prediction, and quantitative 

structure activity relationship (QSAR) modeling. Capecchi, Probst, and Reymond (2020) 

introduced the MAP4 (MinHashed Atom Pair up to four bonds) which is a newer fingerprint 

that combines atom pair fingerprints (which consider distances between atom types) with 

MinHashing, a technique that compresses the fingerprint into reducing dimensional 

representation while preserving similarity(MAP4 can be used to compare antimicrobial 

peptides (AMPs) or complex natural products), an advanced algorithm that integrates circular 

substructures with atom pair distance relationships. Unlike fingerprints such as ECFP4 taht 

encodes the local chemical environment around each atom in a molecule by considering circular 

substructures up to a radius of 2 bonds (hence “4” in ECFP4, meaning a diameter of 4 bonds). 

It generates a binary vector where each bit represents the presence or absence of specific atom- 

centered substructures.Witthin veterinary pharmacology perspective, the application of such 

fingerprinting techniques is highly impactful. Qi et al. (2024) suggest the integration of 

molecular fingerprints into ML pipelines for predictive modeling of pharmacokinetic (PK) and 

pharmacodynamic (PD) parameters. For instance, analysis of MAP4 fingerprints of NSAID 
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analogues such as meloxicam can reveal structural motifs associated with species specific 

toxicity, including renal sensitivity in felines. 

 

 

Figure 14 : MAP4 Atom Pair Encoding Strategy Circular substructures centered around atoms 

j and k are extracted at radii r = 1 and r = 2 and represented as SMILES strings. These fragments 

are then arranged lexicographically and separated by the topological bond distance between the 

atom pair along the shortest path (highlighted in blue). The resulting character strings constitute 

the MAP4 atom-pair molecular fragments for each radius, as described in Capecchi et al. 

(2020). 

Molecular fingerprints serve as algorithmically efficient representations of chemical 

compounds as shown in figure 15, capturing key structural parameters such as functional 

groups or substructures. These vectors facilitate rapid similarity comparisons and are central to 

ML driven drug repurposing, toxicity prediction, and antimicrobial modeling in veterinary 

medicine. For exemple, structurally similar NSAIDs like meloxicam and carprofen can be 

grouped by ML algorithms to evaluate therapeutic potential or species-specific metabolism 

risks (Sahayasheela et al., 2022). 
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Figure 15: Machine Learning-Based Analysis of NSAIDs, visualization of pharmacokinetic 

and pharmacodynamic (PK/PD) profiles using machine learning methodologies. Adapted and 

created by the author based on Datta et al. (2021). 

Within veterinary molecules such as enrofloxacin or flunixin meglumine permit 

automated computational models to forcast critical pharmacological attributes including 

solubility, receptor binding affinity, and species-specific toxicity. This is particularly impactful 

for identifying safer analogues in sensitive species, such as felines prone to NSAID consisting 

of nephrotoxicity. AI assists facilitating the incorporation of omics data into diagnostic 

protocols through the computational interpretation of transcriptomic datasets to uncover 

biomarkers like IL-6 or haptoglobin in diseases such as bovine respiratory disease, supporting 

early metaphylactic intervention. In parallel, immunological markers such as immunoglobulin 

Y (IgY) titers, which indicate humoral immune responses, and T-cell activation metrics, 

reflective of cellular immunity, serve as key diagnostic markers of host pathogen interaction 

state. 

When following a consistent analytical structure collected and digitized, these 

biomarkers can be integrated into ML algorithms especially supervised models like random 

forests or support vector machines to stratify animals based on their likelihood of harboring 

subclinical infections, such as Salmonella enterica or Campylobacter jejuni. 

For instance, birds manifesting elevated IgY titers paired with prolonged T-cell 

proliferation responses may be recognized as active or past carriers, even in the absence of overt 

clinical symptoms. This provides continuous classification of risk at the flock level. As 

demonstrated in the literature (Qi et al., 2024; Alsulimani et al., 2024). Advanced ML 

techniques like Support Vector Machines (SVMs), Random Forests, and deep neural networks 

are widely used with in veterinary pharmacology. These algorithms differentiate toxicity, 

forecast ligand receptor affinity, and infer pharmacokinetics (PK) and pharmacodynamics (PD), 

ML allows comprehensive modeling of host pathogen-drug interactions. 
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Molecular fingerprints and machine learning are reshaping veterinary drug 

development, offering scalable, data-oriented approaches to therapeutic innovation. Their 

integration into precision veterinary medicine aligns with ethical standards and the One Health 

framework, as emphasized by Qi et al. (2024), Vamathevan et al. (2019), and Sahayasheela 

et al. (2022). For instance, two non-steroidal anti-inflammatory drugs (NSAIDs) like 

meloxicam and carprofen may have similar fingerprint patterns due to shared structural motifs, 

allowing machine learning models to group them by therapeutic action or species-specific 

metabolism.as shown in the figure 16. 

 

 

Figure 16: Application of Molecular Fingerprints in Drug Discovery, illustration of the 

operational framework and role of molecular fingerprints in computational drug discovery. 

Developed by the author based on Sahayasheela et al. (2022). 

The structural encodings of veterinary pharmacological agents such as enrofloxacin or 

flunixin meglumine permit ML algorithms to examine compound configurations to estimat the 

core pharmacological behaviors, comprising solubility, species specific toxicity, and receptor 

binding affinity. Additionally, deliver individualized veterinary treatment through integration 

of pharmacokinetic (PK) and pharmacodynamic (PD) modeling. These models characterize the 

PK and PDprofiles of drugs in how they are absorbed, distributed, metabolized, and eliminated, 

alongside their physiological effects In the treatment of canine epilepsy with phenobarbital, AI 

can synthesize PK data (plasma concentrations over time) with PD outcomes (seizure 
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frequency) to recommend the safest dosing that balances efficacy and safety, minimizing 

undesirable effects like sedation or hepatotoxicity. 

Within parasite management, ML is increasingly used to enhancing the precision and 

safety of antiparasitic therapeutique interventions through in silico modeling. These 

computational models analyze genomic, transcriptomic, and biochemical data from both host 

and parasite to simulate metabolic interactions and predict pharmacodynamic responses. This 

enables veterinarians to select the most effective antiparasitic agents while minimizing the risk 

of host toxicity. 

The approach is particularly valuable in multi species farming systems, where off-label 

drug use is common and poses risks of resistance or adverse effects due to interspecies 

metabolic differences ,for example, such models can simulate how an antiparasitic drug like 

ivermectin interacts with the nervous system of nematodes while simultaneously estimating 

potential toxicity in a specific species (goats or alpacas), which may have different metabolic 

rates or detoxification pathways. 

ML models trained on PK and PD data can predict cross-species efficacy and tolerance 

of drugs such as macrocyclic lactones and support resistance management strategies by 

identifying molecular resistance markers like β-tubulin gene mutations. These models help in 

anthelmintic prudent managment by recommending optimized treatment protocols, promoting 

individualized therapy, and reducing the emergence of drug-resistant helminths, thereby 

aligning with both animal welfare and One Health objectives (Qi et al., 2024; Sahayasheela et 

al., 2022). 

 
IV.2. AI and Antimicrobial Resistance 

 

Utilizing machine learning (ML) techniques within artificial intelligence (AI) 

frameworks to address antimicrobial resistance (AMR) in veterinary practice marks a critical 

progression in diagnostic methodologies and the strategic management of antimicrobial 

therapies. According to the analyses presented by Alsulimani et al. (2024) and Ali et al. 

(2023), AI's ability to process and interpret high-dimensional, heterogeneous datasets positions 

it as a powerful tool for facilitating early detection of antimicrobial resistance (AMR), guiding 

evidence-based antimicrobial selection, and enabling longitudinal surveillance across animal 

populations. These applications are particularly critical in veterinary settings, where 
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microbiological testing infrastructure may be restricted, especially in rural or resource limited 

environments. 

Through supervised ML techniques such as random forests, support vector machines (SVMs), 

and deep neural networks, these models learn to associate genomic or clinical patterns with 

antimicrobial susceptibility or resistance outcomes.as illustrated in the figure 17. 

 

 

Figure 17: Schematic Representation of an Antimicrobial Resistance Prediction Model 

Highlighting Key Genetic Markers. The model incorporates the detection of mecA 

(conferring methicillin resistance) and blaZ (encoding β-lactamase, an enzyme responsible 

for the degradation of β-lactam antibiotics). Adapted and illustrated by the author based on 

data from Ali et al. (2023). 

AI models are developed through exposure to multifactorial datasets encompassing a wide array 

of clinical, Imaging, and physiological variables, such as: 

IV.2.1. Genomic sequences of bacterial isolates 

 

Genomic sequencing of bacterial isolates including Escherichia coli from bovine 

mastitis, Salmonella spp. in poultry, and Staphylococcus pseudintermedius from canine 
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dermatological cases, forms the baes of AI-driven AMR prediction models within veterinary 

practice. 

Primary, isolates undergo whole genome sequencing (WGS), producing comprehensive 

data sets that include resistance genes, mobile genetic elements, and other genomic features. In 

the next stage, AI systems perform pattern extraction by scanning these genomes for known 

resistance determinants such as β-lactamases (blaZ, blaCTX-M), macrolide resistance genes 

(erm, msr), and methicillin-resistance gene (mecA), while also assessing the context of 

surrounding sequences ( plasmids, integrons, transposons) that influence gene expression and 

transmission. During model training, supervised algorithms such as SVMs, Random Forests, or 

Neural Networks, are calibrated using labeled WGS data linked to phenotypic outcomes like 

minimum inhibitory concentrations (MICs) or traditional susceptibility testing. Once deployed, 

these AI-enabled platforms can efficiently infer resistance phenotypes in clinical contexts for 

example, identifying extended-spectrum β-lactamase (ESBL) production in Escherichia coli 

isolated from dairy cattle, detecting quinolone-resistant Salmonella strains in poultry, or 

flagging methicillin-resistant Staphylococcus pseudintermedius (MRSP) in canine patients. 

This facilitates timely optimization of antimicrobial regimens. Integrated workflows 

enable resistance predictions to be delivered within 24–48 hours into electronic health records 

or laboratory information systems, thereby supporting evidence-based therapeutic decisions 

grounded in structured and systematically acquired clinical data. Furthermore, consolidating 

antimicrobial resistance profiles across multiple herds allows for the early recognition of 

emergent resistance trends, thereby informing the development and deployment of targeted 

regulatory and biosecurity interventions. 

These AI-facilitated surveillance frameworks mark a strategic advancement in 

veterinary microbiology, enabling expedited clinical decision-making, optimization of 

therapeutic regimens, and improved disease management at the herd level (Ali et al., 2023; 

Alsulimani et al., 2024). 
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Figure 18: Machine Learning-Based Prediction of Antimicrobial Resistance in Veterinary 

Clinical Settings (Adapted by author from Ali et al., 2023; Alsulimani et al., 2024). 

IV.2.2. Phenotypic susceptibility profiles 

 

Phenotypic antimicrobial susceptibility profiles, obtained through standardized 

methodologies such as minimum inhibitory concentration (MIC) determination and disc 

diffusion assays these profiles serve as critical input data within computational frameworks 

designed to predict antimicrobial resistance (AMR) in veterinary clinical contexts.In applied 

practice, each bacterial isolate such as Escherichia coli, Salmonella spp., or Staphylococcus 

pseudintermedius is subjected to standardized in vitro susceptibility assays to evaluate its 

response to selected antimicrobial agents ,to assess its susceptibility to a preselected set of 

antimicrobial agents, thereby producing quantitative outputs such as minimum inhibitory 

concentration (MIC) values or inhibition zone diameters, which serve as foundational inputs 

for resistance profiling and AI model training. AI models incorporate these categorized 

phenotypic results to learn associations between genomic or clinical features and observable 

resistance phenotypes. For instance, a model trained with MIC values for β-lactam antibiotics 

can precisely predict whether a Salmonella isolate satisfies the validated veterinary breakpoint 

for resistance. Similarly, disc diffusion metrics, such as zone diameters for fluoroquinolones in 

E. coli from poultry are used to calibrate prognostic classification performance of AI 

algorithms. By connecting these phenotypic data with genotypic markers ( bla-type genes) and 
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clinical metadata, machine learning systems can forecast antimicrobial resistance in under 48 

hours, significantly reducing diagnostic turnaround time. Integration of these predictions into 

electronic systems supports veterinarians in making scientifically validated therapeutic 

strategies choosing narrow spectrum agents when susceptibility is confirmed or employing an 

alternative therapeutic class with increased potency when resistance is predicted, while 

simultaneously informing herd level clinical resource management policies. This synergy 

between classical microbiology and AI thus enhances diagnostic precision, optimizes 

therapeutic outcomes, and contributes to sustainable antimicrobial use in production and 

companion animal settings (Ali et al., 2023; Alsulimani et al., 2024). As demonstrated in 

figure 19. 

 

Figure 19: ML Driven Prediction of Antimicrobial Resistance in Veterinary Clinical practice 

Illustration adapted and conceptualized by the author, based on data and methodologies from 

Ali et al. (2023) and Alsulimani et al. (2024). 

IV.2.3. Antimicrobial Stewardship and Surveillance in Veterinary Practice 

 

Antimicrobial stewardship, as emphasized in the within AI integration, includes the 

responsible and supported by observed outcomes use of antibiotics to retain their efficacy, 

minimize resistance development, and enhance therapeutic outcomes across species. Within 

veterinary medicine, especially in production animal systems such as dairy farming, AI-systems 

provide a continuous surveillance which plays a pivotal role by analyzing aggregated datasets 

to detect usage trajectories and emerging resistance risks. 
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IV.2.3.1. Surveillance-Driven Protocol Optimization: Case Example from Dairy Calves 

 

For instance, when electronic medical records and treatment histories are mined using 

ML models, patterns of antibiotic overuse such as the frequent empirical administration of 

broad-spectrum cephalosporins, can be correlated with poor clinical outcomes or pathogen 

shifts. In dairy calves, this has been linked to a higher incidence of Cryptosporidium parvum 

infection recurrence, potentially due to microbiota disruption or immunosuppressive 

consequences of inappropriate antimicrobial exposure. By recognizing these tendencies, AI 

systems can generate stewardship recommendations suggesting narrower spectrum alternatives, 

or even non antibiotic interventions such as fluid therapy, vaccination, or improved colostrum 

management. Furthermore, these insights feed back into population level surveillance, allowing 

veterinarians and farm managers to personalized herd health protocols based on instantaneous 

resistance progression and inter species differentiated responses. 

This adaptive feedback loop aligns with One Health principles by addressing 

antimicrobial resistance not only as an individual animal concern, but also as a population and 

public health issue. As highlighted by Alsulimani et al. (2024), the integration of AI into such 

programs promote the responsible utilization antibiotics also for earlier intervention, targeted 

drug use, and continuous monitoring, transitioning veterinary infectious disease control from 

reactive to proactive, data informed strategies. 

IV.2.3.2. Predictive AMR Modeling in Intensive Livestock Systems 

 

In veterinary medicine, particularly within the domain of food producing animals, 

artificial intelligence (AI)-driven predictive modeling for antimicrobial resistance (AMR) 

serves as a cornerstone of modern herd-level health management and biosecurity. As 

highlighted by Ali et al. (2023), these models are exceptionally valuable in intensive production 

environments such as poultry farms and swine operations where high animal density increases 

the risk of rapid dissemination of resistant pathogens, including Campylobacter and 

Escherichia coli. The operational Framework begins with the collection of microbiological and 

environmental data through sentinel surveillance strategies. 

This may include fecal sampling, water or feed testing, and metadata on treatment 

histories or environmental conditions. AI frameworks, especially those employing supervised 

machine learning methodologies such as random forest classifiers or deep neural 

architectures,these models are trained to discern associations between resistance phenotypes 
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,such as fluoroquinolone-resistant Campylobacter ,and explanatory variables including 

antimicrobial administration frequency, animal stocking density, and environmental parameters 

such as ambient temperature and relative humidity.Upon completion of training, these models 

exhibit the capability to forecast the emergence and possible propagation of antimicrobial 

resistance (AMR) within livestock production settings. As an illustration, the detection of a 

rising incidence of resistance to tetracyclines or third generation cephalosporins in swine 

production environments may prompt system level adjustments. 

The AI-driven framework may recommend context specific, data supported adjustments 

to therapeutic or management protocols , These interventions may entail the optimization of 

antimicrobial protocols to align with emerging resistance patterns , the cyclical use of different 

antimicrobial classes to mitigate resistance development ,the extension of immunoprophylactic 

strategies to reduce susceptibility within the population , or the enhancement of pathogen 

containment protocols and hygiene standards in regions identified as transmission hotspots .The 

integration of these predictive tools supports not only more judicious antimicrobial use but also 

enables early, targeted intervention deacresing the likelihood of large-scale outbreaks and 

economic losses as showun in figure 20. 

Moreover, the surveillance data generated through these systems contributes to national 

AMR monitoring frameworks and supports compliance with One Health objectives by reducing 

zoonotic transmission risk to humans via food chains or environmental contamination .Within 

veterinary practice these findings support the Adoption of targeted,informed therapeutic 

strategies by veterinarians and farm managers, such as : 

-Enforcing evidence informed constraints on the utilization of specific antimicrobial agents to 

curb resistance development . 

-Enhancing biosecurity in specific zones. 

-Initiating group level vaccination or probiotic programs.(de la Lastra et al., 2024) 
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Figure 20: AI-Based Antimicrobial Resistance Forecasting for Herd Level Surveillance and 

Intervention Strategies. Adapted and illustrated by the author, based on data and methodology 

from Ali et al. (2023). 

Within veterinary practice these findings support the Adoption of targeted,informed therapeutic 

strategies by veterinarians and farm managers, such as : 

-Enforcing evidence informed constraints on the utilization of specific antimicrobial agents to 

curb resistance development . 

-Enhancing biosecurity in specific zones. 

-Initiating group level vaccination or probiotic programs (de la Lastra et al., 2024). 

 
IV.2.3.3. Clinical Integration in Equine Practice and Strategic AMR Mitigationa 

 

In equine veterinary practice, the integration of artificial intelligence (AI) with clinical data 

is proving valuable in the early identification and management of multi drug resistant (MDR) 

infections, particularly involving Streptococcus equi, the causative agent of strangles. As 
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highlighted by Ali et al. (2023), AI models can process and correlate unstructured clinical notes 

(such as physical examination findings, treatment history, or symptom progression) with 

microbiological laboratory outputs, including culture results and antimicrobial susceptibility 

profiles as demonstrated in the figure 21 .As Ali et al. (2023) emphasize, the core advantage 

lies in shifting from reactive to proactive intervention moving beyond empirical prescribing 

toward data-informed antimicrobial stewardship. 

 

Figure 21 : AI-Enabled Management of Multidrug-Resistant (MDR) Infections in Veterinary 

Contexts Illustration by the author, adapted from Ali et al. (2023). 



CHAPTER V. LIMITATION AND RECOMMENDATIONS 

45 / 53 

 

 

CHAPTER V. LIMITATION AND RECOMMENDATIONS 

 

V.1. Limitations of AI in Veterinary Practice 

 

Despite its significant potential, the integration of artificial intelligence into veterinary medicine 

is constrained by several critical challenges : 

-Data Quality and Standardization: Veterinary datasets are often fragmented, variably 

structured, and constrained by species-specific nuances.The absence of annotated data and 

standardized terminologies restricts model generalizability, particularly for rare or non- 

traditional species. 

-Computational Resources and Network Support :Numerous veterinary clinics, particularly in 

rural or resource-constrained areas, lack the requisite infrastructure to support effective AI 

integration , including access to cloud infrastructure, integrated digital medical records, and 

stable network connectivity. 

-Imbalances in Training Data and Outcome Prediction :Predictive frameworks trained on 

limited human or region-specific datasets may not perform reliably across diverse animal 

cohorts.Diagnostic fidelity may be compromised when models are trained on datasets lacking 

comprehensive representation of veterinary diversity. 

-Limited Interpretability of DL Architectures : Numerous AI systems, especially those 

employing DL frameworks, exhibit limited interpretability due to their inherently opaque 

computational processes.Such limited transparency can impede the clinical validation of AI 

outputs and potentially undermine the confidence of veterinary professionals in their 

application. 

-Ethical Considerations in AI Deployment : The regulatory and ethical infrastructure governing 

AI applications in veterinary medicine is still in its formative stages, lacking comprehensive 

standards for responsible deployment . Salient concerns encompass data governance, 

confidentiality, legal liability, and intellectual property considerations , particularly within 

collaborative or multi-institutional veterinary frameworks. 

-Veterinary Workforce Competency and Educational Preparedness : The absence of structured 

education in AI among veterinary practitioners constitutes a significant impediment to effective 

adoption and utilization of AI-driven tools. In the absence of sufficient training and institutional 

support, there remains a tangible risk of AI tool misapplication or hesitancy toward their 

integration in clinical practice. 
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V.2. Recommendations 

To mitigate the aforementioned limitations and promote the responsible and effective 

integration of artificial intelligence within veterinary practice, the following strategic 

recommendations are advanced: 

-Harmonization and System Compatibility:The implementation of universally accepted 

terminologies—such as the SNOMED-CT Veterinary Extension—and the alignment of data 

structuring protocols are essential to facilitate interoperability between diagnostic laboratories, 

clinical settings, and artificial intelligence systems. 

-Expansion of datasets encompassing a wide range of animal : Directed resource allocation is 

essential for the development of comprehensive, taxon-specific datasets to support robust AI 

model training. Cross-sectoral partnerships are pivotal in facilitating this endeavor , 

collaborative efforts encompassing academic institutions, veterinary practitioners, and public 

health stakeholders are fundamental to ensuring balanced representation across species and 

epidemiological contexts. 

-Comprehensibility of Computational Outputs : Priority should be given to the advancement 

and deployment of transparent ('white-box') artificial intelligence frameworks that facilitate 

interpretability and clinical accountability. Such systems ought to enable veterinary 

professionals to trace diagnostic reasoning and assess algorithmic consistency, especially 

within contexts involving critical clinical decisions. 

-Advancement of Digital and Technological Capacity :Investment from public institutions and 

industry partners is essential to strengthen digital capacities within veterinary systems, with 

particular emphasis on addressing infrastructural deficits in underserved settings.This 

encompasses the provision of financial support for the implementation of advanced diagnostic 

platforms, interoperable electronic health record systems equipped for AI integration, and 

scalable cloud-based data management infrastructure. 

-Curricular Reform for AI Proficiency in Veterinary Training : Foundational and advanced 

competencies in AI should be systematically integrated into veterinary curricula at both 

undergraduate and postgraduate levels to ensure future practitioners are proficient in the 

application of digital tools in clinical and research contexts.Educational programs should 

prioritize the development of both technical proficiency and ethical acumen concerning the 

deployment of AI in veterinary contexts. 

-Policy Frameworks for Ethical and Regulatory Compliance : It is imperative that national and 

international veterinary oversight bodies establish comprehensive frameworks for the 
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validation and continuous evaluation of AI models deployed in clinical settings.ongoing 

performance monitoring following deployment, as well as clearly delineated provisions for 

clinical accountability. 
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Conclusion 

 

The integration of AI including ML, DL, and NLP has markedly reshaped the landscape 

of veterinary biomedical sciences. This project systematically examines AI-driven innovations 

across key domain including diagnostic imaging, parasitological surveillance, predictive 

epidemiology, AMR monitoring, drug discovery,biosensor-based physiological analytics , and 

veterinary telemedicine. 

Collectively facilitate a transition from passive to predictive, data-informed clinical 

decision-making, thereby enhancing diagnostic sensitivity, specificity, and temporal precision. 

AI-enabled platforms ,such as the Vetscan Imagyst® for fecal egg quantification and CNNs for 

thoracic radiographic interpretation , have exhibited diagnostic efficacy on par with and in 

certain scenarios exceeding traditional approaches, particularly when deployed on curated, 

species-specific datasets. In the context of AMR mitigating , AI technologies have augmented 

early detection of resistance tendencies , optimized antimicrobial selection, and supported 

targeted intervention strategies, aligning veterinary care with One Health imperatives. 

furthermore , the integration of AI-enabled wearable devices and remote telemedicine platforms 

to significantly improved access to continuous health surveillance and veterinary consultation 

in remote or resource-limited settings. 

Ultimately, AI serves not as a replacement for clinical expertise, but as a powerful 

augmentative tool , increasing diagnostic precision, expediting clinical triage, and supporting 

evidence-based interventions across diverse species, clinical systems, and geographies 

contexts. 
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