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Abstract

This study examine the integration of artificial intelligence (Al) in veterinary medicine,
with a focus on diagnostics, pharmacotherapy, and health monitoring.

Through machine learning (ML), deep learning (DL), and natural language processing
(NLP), Al technologies are being used to improve diagnostic accuracy, clinical decision-
making, and disease surveillance. Applications include image analysis, predictive modeling,
wearable sensor technologies, and drug development, particularly for antimicrobial resistance
(AMR).

The work highlights the transformative potential of Al in supporting evidence-based
veterinary practice and enhancing animal health outcomes across both clinical and field settings.

Keywords: artificial intelligence, veterinary medicine, machine learning, diagnostics, sensors,
antimicrobial resistance.

Résumé

Cette étude explore D'intégration de D'intelligence artificielle (IA) en médecine
vétérinaire, en mettant ’accent sur le diagnostic, la pharmacothérapie et la surveillance de la
santé animale.

Gréace au machine learning (ML), deep learning (DL) et au traitement automatique du
langage naturel (NLP), les technologies d’IA permettent d’améliorer la précision diagnostique,
I’aide a la décision clinique et la surveillance épidémiologique. Les applications abordées
incluent I’analyse d’images, la modélisation prédictive, les capteurs connectés, et le
développement medicamenteux, notamment contre la résistance antimicrobienne (RAM).

Ce travail souligne le potentiel transformateur de I’ A pour une pratique vétérinaire
fondée sur les preuves et orientée vers des soins de santé animale améliorés.

Mots clés : intelligence artificielle, médecine vétérinaire, apprentissage automatique,
diagnostic, capteurs, résistance antimicrobienne.
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INTRODUCTION

Introduction

While a few instructors at our institutions possess solid expertise in artificial intelligence
(Al), their familiarity often remains limited to generative platforms like ChatGPT and Gemini.
These belong to a much broader Al spectrum spanning across data classification, analytical
analytics, and objective interpretation of complex, high-dimensional datasets. Such capabilities
are vital in enhancing clinical workflows with high accuracy, particularly through repetitive
processing of extensive veterinary records, epidemiological surveillance, and interpretation of
laboratory results. Al’s impact on veterinary diagnostics is part of a long legacy. Since the
establishment of the Conference of Veterinary Laboratory Diagnosticians in 1958 (later the
AAVLD), there has been persistent interest in standardizing nomenclature, laboratory
protocols, and informatics to improve animal and public health (Carter & Smith, 2021).

Initial investigations in the 1960s into mainframe-based veterinary data retrieval
established the foundational architecture for modern veterinary informatics systems. Despite
considerable advancements, the absence of comprehensive standardization persists,
underscoring the ongoing need for contemporary initiatives. The progression of artificial
intelligence reflects the broader trajectory of computer science, characterized by the evolution
toward more abstract and expressive programming paradigms.The progression of artificial
intelligence reflects the broader trajectory of computer science, evolving from assembly

languages to contemporary tools such as Python (Brooks, 1975; Reeves et al., 2024).

Where early programming required meticulous attention to low-level syntax,
contemporary generative Al enables intuitive human—computer interaction through natural
language.This “prompts-first” paradigm makes Al accessible to novice learners and aligns
directly with the way veterinary practitioners engage with clinical reasoning and decision-
making. In modern veterinary education, especially within epidemiology, diagnostic imaging,
and precision medicine, subfields of Al are being integrated into core practice. Machine
learning models facilitate epidemiological forecasting and predictive analytics; speech
recognition technologies support hands-free clinical examinations; image classification
algorithms improve the interpretation of radiographic images; and natural language processing
(NLP) technique's structure unformatted clinical narratives for enhanced data utility.
Collectively, these systems emulate critical phases of clinical reasoning, encompassing
anamnesis, data integration, diagnostic formulation, and individualized treatment planning
(Riege et al., 2020).
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INTRODUCTION

The initial objective of this study is to critically assess both current and emerging applications
of Artificial Intelligence (Al) within veterinary medicine, with particular emphasis on its roles in
diagnostic imaging, clinical decision support systems (CDSS), epidemiological surveillance, and
pharmacotherapeutic innovation. Specifically, this research seeks to:

-Analyze the contribution of ML, DL, and NLP to improve diagnostic accuracy and optimizing
clinical workflows in veterinary practice.

-investigate the integration of Al-driven technologies in predictive diagnostics and
epidemiological surveillance within veterinary practice.

-Investigate the application of wearable technologies and connected devices for continuous
monitoring of physiological and behavioral parameters in animal health management.

-Assess the impact of artificial intelligence (Al) on pharmacological innovation, with emphasis
on in silico drug modeling and the prediction of antimicrobial resistance (AMR) patterns.
-Examine the prevailing challenges and prospective developments associated with Al
implementation in companion and production animal healthcare, with precise attention to

infrastructural, regulatory, and ethical barriers in rural and resource limited environments.

This objective aligns with the wide aim of promoting evidence-informed, data-centric,

and technologically included methodologies within contemporary veterinary context .
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CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

CHAPTER I : FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE
I.1. Breakdown of Key Al Subfields in Veterinary Practice

1.1.1. Machine Learning (ML)

1.1.1.1. Introduction to Machine Learning in Veterinary Science

ML forms one of the fundamental core pillars of Al, with notable implications in
veterinary biomedical sciences due to its capacity to refine diagnostic sensitivity and Validity
through repetitive learning from large-scale clinical datasets. This capability is particularly
evident in interpretation of imaging and laboratory analysis, where ML models can be trained
on archived radiographic images, hematobiochemical profiles, or cytological slides to improve
the precesion of disease detection. For example, supervised learning algorithms have been
employed to assist in identifying pulmonary consolidation in canine thoracic radiographs and

in distinguishing hemoparasites on microscopically stained blood films.

This regular data driven optimization enables more objective clinical decision making,
supports symptom manifestation surveillance, and contributes to Unifying diagnostic protocols

across practices with variable technical capacity. (Szlosek et al., 2024)

1.1.1.2. Structuring and Interpreting Veterinary Clinical Data

Veterinary clinical data may exist in different structural variants, distributed from
structured datasets, such as complete blood counts (CBC), serum biochemistry profiles, or
labeled diagnostic imaging (thoracic radiographs), to semi-structured information, including
clinical case records, evolution sheets, prescription logs, or periodic follow-up observations
during herd health monitoring.

These data types constitute a fundamental part to both companion and animal production
practice. Their correct interpretation, particularly when aided by artificial intelligence (Al)
systems, augment diagnostic accuracy, ensures continuity in therapeutic protocols, and supports
efficient surveillance of zoonotic and production-limiting diseases. as illustrated in figure 1
(Szlosek et al., 2024)

1.1.1.3. Learning Paradigms: Supervised vs. Unsupervised ML in Practice
ML, a foundational subfield of artificial intelligence (Al), equips computational systems

with the capacity to learn autonomously from clinical and epidemiological data, Augmentin
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CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

effectiveness over time without Demanding Detailed programming. In contrast to rule-based
systems diagnostic approaches Controlled by fixed Regulation Derived from Prescribed
methodologies, ML algorithms Adjust In real time by Recognizing statistical patterns,

correlations, and Emerging patterns within Elaborate Data collections.

This Versatility Supplies ML especially Pertinent to current veterinary clinical contexts
, Inthe setting of the Heterogeneity of clinical presentations and environmental Factors criteria
flexible, Statistical Validated corrective measure Procedures. Notably, supervised ML has
demonstrated strong utility in veterinary clinical assessment , a radiological visualization is
cornerstone of the Algerian veterinary curriculum, primarily in thoracic and abdominal
radiology. Supervised learning models are taught to recognize patterns using labeled datasets,
such as Classified thoracic radiographs, supporting them to detect pathological conditions
Consisting of lobar pneumonia, cardiomegaly, and bronchial thickening with high resolution .

These systems Replicate the diagnostic deductive logic of a specialized veterinarian,
Providing clinical decision support in regions where specialist interpretation is restricted ,
specifically several rural wilayas. For example, a supervised ML model taught on canine
thoracic X-rays is designed to automatically distinguish congestive heart failure key factors,
increase diagnostic robustness and reducing cross observer fluctuation (Appleby & Basran,
2022).

ML : Refine
Diagnostic
Semnsitivity

Supervised
ML Utility

l

Detect
Pathological
Conditions

l

Clinical
Decision
Support

Improve Enhance
Imaging Laboratory
Interpretation Analysis
Identify . . Objective Symptom Unify
Distinguish Clinical N - o -
Pulmonary - P Manifestatiom Diagnostic
- A Hemoparasites Decision .
Consolidation = Surveillance Frotocols
Making

Figure 01: Schematic Illustrating Machine Learning Integration in Veterinary Diagnostics

adapted and illustrated by the author from Appleby & Basran (2022).
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CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

1.1.1.4. Unsupervised Algorithms for Herd Health and Early Disease Detection

In addition, unsupervised ML techniques serve essential roles in herd health monitoring
and species group medicine domains emphasized under the herd medicine "médecine de
troupeau » ( approach in Algerian veterinary training. These algorithms operate on unlabeled
datasets to Detect Latent patterns, cohorts, or anomalies that may occur prior to clinical
detection , we have k-means clustering is unsupervised ML algorithm that for example in
subclinical mastitis within dairy herds group milk samples based on somatic cell count (SCC)
data from bulk milk tanks. This allows the detection of subclinical mastitis in cows that do not
yet show overt symptoms then classify herds into risk categories ( low, moderate, high Risque)
for early optimized intervention meanwhile monitoring the effectiveness of preventive
strategies by tracking shifts between clusters over time, there is a valuable solution for
identifying disease emergence in structured animal populations such as hierarchical modeling
which is a statistical approach used to analyze data that is structured in nested or grouped
formats, such as animals within herds, herds within farms, or farms within regions , allowing
veterinary epidemiologists to identify early signs of cryptosporidiosis outbreaks in neonatal

small ruminants by classifying data from farms, current time period, or age group.

This classification enable veterinarians to detect changes from baseline morbidity levels.
If multiple flocks exhibit an unusual increase in gastrointestinal symptoms and oocyst presence
across several time points from stool test, the model can flag a risk a probable cryptosporidiosis
outbreak before clinical signs are widespread. Such function are invaluable in supporting
disease surveillance and maintaining productive,once these clusters are formed, veterinarians
can focus preventive actions on high-risk subgroups disease-resilient livestock systems whole

avoiding economic lose (Basran & Appleby, 2022).

1.1.1.5. Diagnostic Modeling: Algorithm-Specific Applications

To achieve these outcomes the choice of algorithm is closely aligned with the nature of
the data and the diagnostic or decision making objective. For example, Support Vector

Machines (SVMs) are widely used for disease classification.

These models constructs a decision-separating surface within the feature space to
differentiate between the categories that separates clinical cases into different categories based

on input features. For instance, in a diagnostic scenario involving hematological markers
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CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

(leukocyte counts, erythrocyte indices), an SVM could be trained to distinguish between

infectious anemia and immune-mediated hemolytic anemia in dogs.

The model learns which combinations of variables best destinguish one diagnosis from
another, allowing for the most precise prediction in new cases , Random Forests, an ensemble
learning technique, are highly useful when managing high dimensional, multi-variable data a
common challenge in veterinary diagnostics. For example, when interpreting comprehensive
biochemical profiles in equine colic cases, a Random Forest model can analyze multiple
parameters (such as lactate, electrolyte levels, hematocrit) simultaneously to anticipate

outcomes such as the need for surgical intervention.

The model uses multiple decision trees, each trained on a random subset of features, and
aggregates their outputs for a reliable prediction , Neural Networks are the foundation of deep
learning and excel in processing high dimensional imaging data. In veterinary radiology,
convolutional neural networks (CNNs) a specialized type of neural network can analyze
thoracic radiographs or abdominal ultrasound images to detect pathologies like cardiomegaly

or hepatic masses.

These networks automatically learn which visual features (edges, textures, shapes)
correlate with disease progress , significantly enhancing diagnostic efficiency, notably in
resource restricted settings , Principal Component Analysis (PCA) is not a predictive model but
a Reduction in variable complexity technique. It is especially valuable in summarizing complex
clinical datasets, like in the case of histopathological analysis, PCA can reduce hundreds of
measured cellular factors , such as nuclear size, staining intensity, and cytoplasmic ratio , into
a smaller number of principal components that preserve most of the varity . These components
can then be used to stratify tumor types or stages with high clarity and decrease computational
load (resource utilization).Overall , these algorithms form the technological core of many
veterinary Al applications, from digital pathology and diagnostic imaging platforms to herd
health surveillance systems. They support veterinarians in Automated Case Prioritization,
enhance diagnostic precision, and facilitate real-time, data-driven decision-making a Paradigm-

shifting in both individual animal care and populationlevel management. (Szlosek et al., 2024)
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Figure 02 : This schematic demonstrates supervised (top) and unsupervised (bottom) learning

approaches in veterinary radiology. In supervised learning, labeled radiographic images are
used to train an Al model to classify new inputs. In contrast, unsupervised learning groups

unlabeled images based on shared features. Adapted from Appleby & Basran (2022).

1.1.2. Deep Learning (DL)
1.1.2.1. Principles of Deep Learning and CNNs in Veterinary Imaging

DL an Advanced subfield of ML, is characterized by its use of artificial neural networks
(ANNs) composed of multiple Successive processing units that simulate the inspired by
processing structure of the biological nervous system.

These multilayered networks enable DL algorithms to autonomously extract complex
patterns from multivariate data of biomedical data, thereby supporting advanced decision
making without predefined rules.

Algorithmic such as Convolutional Neural Networks (CNNs) represent the principal
deep learning architecture applied to diagnostic imaging. CNNs are specifically engineered to

process and interpret spatial hierarchies in two-dimensional (2D) ( standard X-rays) and three-
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CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

dimensional (3D) formats ( CT scans), such as thoracic radiographs, ultrasonography scans, or
computed tomography (CT) datasets. (Cheng et al ., 2021)

1.1.2.2. Application of CNNs in Small Animal Radiology and Internal Medicine

These networks utilize successive convolutional filters to identify low- to high level
patterns ranging from anatomical borders to pathological indicators , mimicking the staged
analysis performed by a veterinary radiologist , in small animal internal medicine, CNNs trained
on annotated thoracic radiographs have demonstrated proficiency in detecting: Alveolar and
interstitial opacities indicative of lobar pneumonia Pleural effusion and bronchial wall

thickening, common in chronic bronchitis and neoplastic infiltration .

These systems are trained using large, labeled imaging datasets where each image is
pre-categorized by experts according to diagnostic findings. Through repetitive optimization
using gradient-based learning of weight matrices across layers, CNNs learn to associate
radiographic features with specific pathological conditions, improving accuracy of the outcome
over time (Deekonda , 2024).

1.1.2.3. Radiographic Interpretation and Enhancing Rural Practice

Importantly, this eliminates the need for the manual steps, these networks are designed
to automatically scan and learn which parts of an image are most important (regions of interest,
or ROIs : lesion , tumor mass , area of increased radiodensity , cardiac silhouette) for identifying

a particular disease or abnormality.

This algorithm proves particularly effective for veterinarians who have limited access
to board certified radiologists or high case throughput CNNs facilitate automated triage and
image interpretation, ensuring timely interventions. This is particularly critical in emergency
and critical care units, where diagnostic latency can affect prognosis. (Appleby & Basran,
2022) as demonstrated in the figure 03 .
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Figure 03: lllustration of deep learning applications in veterinary diagnostic imaging,
highlighting pattern recognition, image classification, and automated interpretation (Appleby
& Basran, 2022).

Moreover, DL tools help standardize interpretive accuracy across practitioners,
supporting uniform clinical decision-making regardless of geographic disparities in veterinary
infrastructure, a point where it is relevant in Algerian rural wilayas or field practice scenarios.
By replicating the diagnostic reasoning processes characteristic of domain experts, deep
learning through CNNs transforms veterinary imaging into a digitally enhanced diagnostic
discipline. These systems improve efficiency in routine and emergency care but also solidify
educational outcomes for veterinary students by enabling Al-driven visual diagnostics. As
highlighted by Appleby and Basran (2022), DL does not replace clinical expertise; contrary,

it strengthens it through evidence-based image analysis.

1.1.3. Natural Language Processing (NLP)

1.1.3.1. Structuring the Unstructured: From Clinical Narratives to Computable Data

NLP is a subfield of Al that Addresses on enabling computational systems to interpret, process,

and generate human language. las for vet filed settings, much of the data generated, such as
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anamnestic reports, clinical examinations, operative summaries, and treatment protocols exists
in unstructured textual form. Often these unstructured datasets are rich in clinical relevance but
are typically underutilized due to their incompatibility with traditional algorithmic processing
methods , NLP enable us to convert those documents into structured, searchable, and analyzable
data formats, enabling more efficient retrieval, case indexing, and diagnostic decision support
(Hossain et al., 2023).

1.1.3.2. Linguistic Processing Steps in Veterinary NLP

The system primarily work based on functions through a series of linguistic and
computational steps that transform unstructured veterinary text into structured, analyzable data.
The process begins with tokenization, where clinical texts data , such as anamnesis or
examination notes , are broken down into individual units like words or sentences, allowing the
system to handle and deduce language efficiently. Next, Named Entity Recognition (NER)
recognize and extracts specific clinical elements, including anatomical structures "renal cortex™,
physiological conditions tachycardia™, or disease names "canine parvovirus”. Following this,
Part of Speech Labeling assigns grammatical categories ( such as noun, verb, adjective) to each
word, enabling the system to understand how terms function in data information . Finally,
Decoding linguistic input into formal representations connects these identified entities to
formalized veterinary ontologies such as SNOMED-CT Veterinary Extension, facilitating

uniform clinical coding, interoperability, and precise data retrieval (Zhang et al., 2023).

1.1.3.3. Clinical Applications

Through these layered processes, NLP enables automated case indexing, diagnostic
support, and epidemiological surveillance by converting free text records into structured
formats suitable for computational analysis. For veterinary practices it can be used in Case
Retrieval: by facilitating the rapid extraction of historical patient records that align with specific
diagnostic criteria. For instance, querying all feline diagnosed with hypertrophic
cardiomyopathy can be accomplished efficiently, supporting retrospective studies next reduce
error By converting unstructured data such as handwritten notes or dictated clinical narratives
into standardized digital formats, this automation helps diminish risks associated with
misinterpretation and documentation errors also can help us with therapeutic monitoring by
analyzing language patterns across patient records to detect signs of therapeutic failure, for

example, repeated references to "lameness™ in equine medical logs may indicate an inadequate

10/53



CHAPTER I: FUNDAMENTAL CONCEPTS OF ARTIFICIAL INTELLIGENCE

response to treatment, Facilitating the continuous evaluation of treatment protocols, while
monitoring pharmacological usage to ensure compliance with best practices and prevent

potential misuse (Venkataraman et al., 2020) .

1.1.3.4. NLP for Epidemiological Surveillance and Zoonotic Outbreak Detection

Furthermore, its most promising application lies in the domain of epidemiological intelligence.
The dynamic incorporation of NLP technologies into disease surveillance systems improving
the automated recognition of terminology indicative of zoonotic or reportable conditions , such
as references to "suspected leptospirosis.” This capability significantly contributes to the
timelier identification of potential outbreaks and strengthens biosecurity measures through
more effective and strategic resource deployment (Aslam et al., 2023).

1.1.35. Real-Time Deployment in High-Volume Veterinary Settings

In high volume veterinary hospitals managing hundreds of clinical cases monthly , NLP
systems play a transitional role in extracting and analyzing unstructured data from clinician
notes. For instance, during a suspected outbreak of canine distemper virus, an NLP algorithm
can autonomously scan free-text medical records to identify keywords such as “ocular

2 <

discharge,” “myoclonus,” or “seizure,” subsequently flagging relevant cases for review and
prioritizing them for laboratory validation focusing on those exhibiting the most indicative

markers of high priority pathological conditions.

This real time data summarize not only facilitates early outbreak detection but also
improve diagnostic precision and supports timely epidemiological responses. By automating
the identification of clinically significant details within narrative records, NLP contributes to

streamlined clinical workflows and fosters objective evidence based decision making.

In the Algerian veterinary context where field based reporting and structured medical
documentation are integral to both herd health and companion animal practice NLP stands out
as a scalable solution that strengthens diagnostic efficiency and reinforces the continuity of care
across diverse clinical environments, as Basran and Appleby (2022) affirm, NLP strengthens
veterinary medicine by integrating textual intelligence bridging the gap between clinical

narrative and cognitive logic.
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Figure04 : A schematic representation of the NLP workflow in veterinary contexts, illustrating

data collection, processing, and clinical application. Adapted from Appleby (2022).

1.2. Clinical Decision Support Tools

1.2.1. Functional Scope and Clinical Relevance of CDSTs

Clinical Decision Support Tools (CDSTs) represent a critical interface between

veterinary expertise and Al , facilitating timely data informed guidance that improve diagnostic

outcomes , optimizes therapeutic protocols , and synchronize in clinical decision making.

Including in algorithmic reasoning, these systems operate by diffusing structured and

unstructured patient data including electronic medical records (EMRs),such as canine cardiac

evaluation ( Rule-Based Engine / Decision Tree) done in the case of a middle aged Labrador

Retriever presented with exercise intolerance and a subtle systolic murmur , that include

auscultation examination data and echocardiographic measurements (such as left atrial
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enlargement and fractional shortening) were entered into the EMR. The CDST analyzed these
structured data and cross referenced them with cardiomyopathy protocols (Lee et al., 2025).

1.2.1.1. Integrated Decision-Making in Companion Animal Care

It proposed dilated cardiomyopathy (DCM) as the leading differential diagnosis,
recommended further diagnostic monitoring with a Holter ECG , next the Feline Chronic
Kidney Disease Tracking (Data Integration) a senior domestic shorthair cat with stable Stage 2
CKD (Supervised Learning Model + NLP ) experienced decreased appetite and an increase in
serum creatinine concentrations. The CDST summarized laboratory results (elevated BUN,
creatinine, low urine specific gravity) with free text clinical notes such as “recent vomiting”
and “reduced food intake.” Based on these information , the system Designated probable
progression to IRIS (International Renal Interest Society) Stage 3, advised monitoring for
metabolic acidosis, and recommended dietary adjustments along with subcutaneous fluid
therapy .(Henry et al., 2024)

1.2.1.2. CDSTsin Herd-Level Surveillance and Population Medicine

In the case of Ruminant Disease Surveillance ( NLP + Unsupervised Learning / Data
Mining) In a mixed animal practice, an increased incidence of neonatal lamb diarrhea was
recorded in the EMR. The CDST integrated geotemporal case data with vet notes referencing

2 ¢¢

clinical signs like “lethargy,” “scours,” and “poor colostrum intake.” It generated an alert for a
potential cryptosporidiosis outbreak, advised herd-level fecal screening, and recommended

biosecurity measures aligned with OIE guidelines (Akinsulie et al., 2024).

1.2.1.3. Technical Architecture and Al Integration in CDSTSs

From a technical perspective, CDSTSs operate through the integration of ML, NLP, and
Predefined rule based engines to promote data informed clinical reasoning. These systems
analyze structured clinical inputs such as patient signalment, physical exam findings, and
laboratory results , alongside unstructured data from clinical narratives or historical case
records. The technical axis function of a CDST is not just data storage, but intelligent
interpretation: identifying clinically meaningful patterns, classifying differential diagnoses, and
recommending targeted interventions in current time. For instance, Fox et al. (2021)
demonstrated the implementation of an Al-augmented CDST in the management of canine

idiopathic epilepsy. In this model, the system summarized a range of neurologic parameters
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such as episodes of generalized seizures, behavioral changes , and proprioceptive deficits , to
signal idiopathic epilepsy as a primary differential. It then proposed personalized management
recommendations. By aligning its suggestions with published treatment protocols and
longitudinal patient data, the system effectively functioned as a digital extension of veterinary
clinical judgment, rather than a replacement.

1.2.1.4. Advanced Functions: Medication Safety, Prognostics, and Alerts

Such systems are particularly valuable in streamlining diagnostic approaches for
multifactorial pathologies, reducing clinician fatigue, and ensuring consistent adherence to best
performance in evidence based clinical practice. Furthermore, as veterinary CDSTs mature,
their utility expands into sophisticated tasks such as medication interaction checks, outcome
prediction modeling, and Dynamic alert mechanisms responsive to case specific parameters

during clinical data integration (Fox et al., 2021).
1.2.15. Interoperability and Ethical Considerations in Veterinary CDSTs

A critical factor in the implementation of CDSTs into clinical practice is the system’s
ability to function compatibly alongside prior frameworks such as Veterinary Practice
Management Systems (VPMS). Interoperability facilitates seamless data exchange between Al
based diagnostic frameworks and EHRSs, promoting coherent system integration ,diagnostic
databases, and patient history logs, enabling a smooth exchange between structured and
unstructured data. This technical alignment is vital for real-time decision support and for
decreasing administrative tasks that could otherwise hinder clinical efficiency. Moreover,
architectural transparency is central to the ethical deployment of CDSTs. Akinsulie et al. (2024)
emphasize the necessity of employing "white-box™ models systems in which the decision
making logic is understandable, auditable, and traceable by partitionner.

This stands in oppsite to "black-box" Al systems, which, while potentially powerful,
obscure their internal reasoning processes, thereby restricting the clinician’s ability to check or
contest system created recommendations. In veterinary field , where treatment outcomes
primarley affect both animal welfare and public health (particularly in zoonotic emergence or
herd level conditions), assuring such transparency ensures that practitioners can critically assess

and validate Al-generated suggestions (Akinsulie et al., 2024; Fox et al., 2021).
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Figure05 : Schematic representation of Clinical Decision Support Tool (CDST) integration
with Electronic Medical Records (EMR) for disease prediction and management, including use
cases such as Dilated Cardiomyopathy (DCM). Adapted and illustrated by the author from
Akinsulie et al. (2024) and Fox et al. (2021).

1.2.2. Imaging Techniques and Data Processing
1.2.2.1. Al-Driven Image Quality Assessment and Optimization

To explore the internal operational and significance of Al in clinical relevance
diagnostic imaging, it is imperative to analyze the procedural logic of how Al systems operate
beyond the diagnostic they produce . Unlike the traditional software tools that rely on pre
programmed logic, Al particularly through ML and DL , employs data centric models that adapt
dynamically to new input patterns. This adaptability is particularly valuable in the context of
veterinary imaging, where interspecies anatomical and pathological diversity between species

adds complexity to diagnostic interpretation. DL architectures often employ CNNs, which are
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designed to independently analyze unprocessed imaging inputs through successive layers of
feature extraction.

In veterinary imaging, their distinct advantage lies in their capacity to localize and
discriminate subtle variations in radiographic presentations across species without the necessity
for predefined manual feature engineering. where a CNN-based algorithm was developed to
automatically evaluate the quality of canine thoracic radiographs. This system interprets
processes digital radiographic inputs in real time, evaluating parameters such as contrast,
anatomical visibility, and positioning, to determine whether an image meets diagnostic criteria.
Once substandard images are detected, the system delivers to clinician's immediate feedback,
allowing for adjustments repositioning or exposure settings , thus maintaining radiological
standards while contributing to reducing unnecessary radiation exposure for both patient and
operator optimizing workflow effectively . This automated cycle control loop illustrates how

ML links the gap between image acquisition and interpretation (Krupinski et al., 2023).

1.2.2.2. Diagnostic Pattern Recognition in Veterinary Imaging

Further broadening the utility of Al in veterinary radiology, Burti et al. (2024) Critically
examine both the strengths and constraints of algorithm supported diagnostic performance.
Their study emphasize that while CNNs are adept at recognizing subtle pulmonary or
orthopedic pathologies, especially in canine and feline thoracic imaging, the interpretive
precision of these models is strongly influenced by the heterogeneity and integrity of dataset

while training the model.

1.2.2.3. Algorithmic Classification Techniques in Sonography and Cardiology

Parallel to CNNs, other algorithmic methodologies bolster the broader diagnostic
ecosystem. Support Vector Machines (SVMs) are applied in classifying sonographic findings
(ultrasonographic patterns), notably when distinguishing neoplastic from non-neoplastic lesions
in abdominal organs. SVMs achieve this by constructing hyperplanes in high dimensional
space, informed by structured parameters like lesion shape, echotexture, and vascularization
indices. Likewise random Forests, by contrast, are a combination of learning methods
particularly suitable for integrating heterogeneous clinical parameters. In veterinary cardiology,
these models can synthesize variables such as echocardiographic chamber measurements, NT-
proBNP concentrations, and patient demographic data (breed or age) to predict congestive heart

failure with high specificity. This resilience arises from the model’s internal averaging
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mechanism, which counters the risk of overfitting and increase reliability across diverse patient
cohorts (Burti et al., 2024).

1.2.2.4. Dimensionality Reduction and Workflow Integration in Pathology and PACS

Moreover, Principal Component Analysis (PCA) serves as an effective method for
reducing the dimensional complexity of large scale morphological datasets. Within veterinary
pathology, PCA improve cytological or histopathological profiles by identifying diagnostically
dominant features such as granularity, nuclear size, or mitotic index which are critical in
identifying mast cell tumors, lymphoma subtypes, or metastatic behavior in biopsy samples.
Noteworthy, these algorithmic systems are now being incorporated into Picture Archiving and
Communication Systems (PACS). Here, Al models not only automate image sorting and
annotation but also prioritize cases according on clinical urgency an essential feature in
academic or referral hospitals institutions with shortage of trained radiological specialists (Lee
et al., 2024).
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Figure 06 : Illustration of Al applications such as Convolutional Neural Networks (CNN) and
Principal Component Analysis (PCA) in veterinary imaging, including biomarkers like NT-
proBNP (N-terminal pro B-type Natriuretic Peptide). Adapted and illustrated by the author from
Burti et al. (2024).
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Chapiter I1: Al in veterinary diagnostics
I1.1. Automated Analysis of Constulation Data and Finding

11.1.1. Deep Learning Models for Structured Clinical Data Interpretation

As Miotto et al. (2018) explain, DL models, especially those structured as multilayered
neural networks, are uniquely suited to manage big scale data common in healthcare, such as
hematological indices, biochemical markers, and microbiological culture results. These models
operate by integrating structured datasets, complete blood count (CBC) parameters, serum
creatinine levels, urinalysis reports and learning latent patterns that correlate with precise
pathological states. For instance, a recurrent elevation in neutrophils, combined with
hyperglobulinemia, may activate a trained algorithm to recomend differential diagnoses such
as chronic bacterial infection or immune mediated inflammation, prompting earlier clinical

intervention.

within veterinary practice , such automation reduces reliance on manual interpretation,
particularly for early detection of deviations from species specific physiological studies . This
is especially advantageous in large dataset clinical settings or rural field operations where
veterinary labor is constrained. Over time, with the assimilation of additional subject specific
features , these models in a recurrent manner refine their predictive accuracy a concept known
as model retraining or reinforcement learning thereby supporting with validated findings care
(Akbarein et al., 2025).

11.1.2. Natural Language Processing in Veterinary Record Mining

Furthermore, as emphasized by Hur et al. (2020), NLP is essential in retrieving
clinically relevant information from unstructured textual records such as anamnesis notes,
SOAP (Subjective, Objective, Assessment, Plan reports, or post-operative summaries. In their
study they analyzed over 4.4 million veterinary consultations records from Australia (2013—
2017). Their model identified 595,089 antimicrobial prescriptions, equating to 145/1,000
canine and 108/1,000 feline consultations receiving antibiotics,from these data NLP enabled
immediate recognition of antimicrobial prescribing evolving profiles, contributing to finding
from 1000 consultation 38 canine and from 1000 consultation 47 feline visits involved high

importance antimicrobials , raising stewardship concerns.
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The common drugs inclue cefovecin in cats and amoxicillin—clavulanate in dogs, while

polymyxin B was the prevalent topical agent frameworks in accordance with the One Health

approach.

11.1.3. Predictive Trend Analysis for Chronic Disease Management

At the implementation level, a clinician utilizing an data centric automated solution

might incorporate serial biochemical information for a canine patient with renal compromise

serum creatinine, BUN, urine specific gravity and receive a predictive tendances analysis

recomended progression toward chronic kidney disease. Such forsight, when aligned with

clinical observations and ultrasonographic findings, strengthen the diagnostic hypothesis and

enhance treatment planning.as demonstrated in the figure 07 below (Renard et al., 2021).
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Figure 07 : illustration show how Enhancing Veterinary care with Al tools improving

diagnostic accuracy, treatment personalization, and health monitoring in veterinary practice.
Adapted and illustrated by the author from Akbarein et al. (2025) and Miotto et al. (2018).

11.2. Artificial Intelligence in Predictive Diagnostics

11.2.1. Transitioning from Reactive to Predictive Veterinary Medicine

From reactive to predictive diagnostics. This evolution aligns closely with the principles

of preventive health management and precision veterinary medicine, especially in the context

of emerging global challenges such as parasite control. Within biological and veterinary
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standpoint, predictive diagnostic systems rely on the integrating and processing of high-
dimensional data inputs, including clinical history, physiological biomarkers, laboratory results
( hematology and biochemistry omics ), and, increasingly, digital imaging and parasitological
evidence. These datasets serve as the foundation for training ML models that can detect

pathophysiological patterns preceding overt clinical disease (Pijnacker et al., 2022).

11.2.2. Deep Learning Applications in Veterinary Parasitology

An exemplary application of DL in veterinary parasitology is demonstrated by the
Vetscan Imagyst® platform, validated by Steuer et al. (2024), which integrates a convolutional
neural network (CNN) specifically trained for high resolution image recognition in fecal

diagnostics.

In this study, the system autonomously analysed equine fecal samples to detect and
differentiate helminth ova particurally strongyles and Parascaris spp with a sensitivity ranging
from 88.9% to 100% and specificity between 91.4% and 99.9%, depending on egg
concentration levels. This level of diagnostic accuracy was shown to rival that of experienced
parasitologists, particularly in samples with low egg counts (5-200 EPG), where the coefficient

of variation was markedly reduced compared to manual McMaster techniques.

11.2.3. Technical Workflow of CNN-Based Diagnostic Platforms

Functionally, the CNN analyzes digitized stained fecal specimens by retrieving and
learning morphological patterns such as egg shape, shell thickness, and internal granularity.
The model segments the image, isolates individual ova, and classifies them based on learned
phenotypic features without the need for manual pre-processing. This allows 2024, mediate,
reproducible quantification of parasite load, supporting data centered decisions in parasite
control (Xu et al., 2024).

11.2.4. Clinical and Epidemiological Advantages in Field Settings

From a veterinary and One Health perspective, such platforms offer several clinical
advantages. First, they facilitate individualized targeted endoparasite control interventions by
accurately classifying animals based on parasite burden, thereby decreasing unnecessary

anthelmintic administration and slowing resistance profression.
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Second, by integrating diagnostic automation into routine herd surveillance, they enable
early intervention in clinically predisposed populations, contributing to biosecurity and animal
welfare. Third, when deployed in resource constrained or high throughput settings, they
democratize access to parasitological expertise by standardizing diagnostic output across users.
Thus, the Vetscan Imagyst® system exemplifies how Al-powered tools can bridge the gap
between laboratory precision and field applicability, redefining parasitic diagnostics as both a
clinical and epidemiological instrument (Steuer et al., 2024).
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Figure 08: Application of predictive modeling to enhance diagnostic accuracy and decision

making in veterinary systems. Adapted and illustrated by the author from (Steuer et al., 2024).
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CHAPTER I11: CONNECTED DEVICES AND ANIMAL MONITORING
I11.1. Mechanisms and Applications of Wearable Technologies

I11.1.1. Sensor Types and Operating Principles in Veterinary Wearables

The advancement of wearable technologies in veterinary medicine, as articulated by
(Zhao et al. 2025), marks a significant evolution in the clinical monitoring of animal health.
These connected, devices integrated with biosensing components provide continuous, non-
invasive surveillance of physiological and behavioral biomarkers, improving a transition from
episodic clinical evaluations to Instantaneous, longitudinal health management. From the
perspective of veterinary informatics and applied Al, this represents a foundational shift toward
early intervention oriented, precision-based medicine in both companion animal and large
animal husbandry system. Wearable systems settings collect biometric and ethological data
including heart rate variability, respiratory rate, core body temperature, ambient activity levels,
Locomotor biomechanics, rumination time, and even feeding behaviors. These data are
acquired through multimodal sensor technologies have become instrumental in Current
practices in digital veterinary health surveillance, each offering unique Observations into

animal physiology and behavior.

For exampel , Accelerometers, which are tri-axial sensors capable of detecting motion
along the X, Y, and Z axes, allow for detailed classification of behaviors such as walking,
resting, or limping. These are particularly valuable in monitoring post operative recovery and
detecting locomotor abnormalities. Gyroscopes likewise are Kinematic sensors that measure
angular velocity how the animal’s body rotational movement along the transverse plane, pitch,
and roll axes. (Unlike accelerometers, which track linear movement, gyroscopes capture
rotational motion, aiding in the assessment of balance, orientation, and gait coordination.) they
are Incorporated in wearable devices (collar or limb sensors) and often paired with
accelerometers to generate a comprehensive biomechanical profile. Thermistors in addition,
embedded in wearable devices such as ear tags or collars, are temperature sensitive resistors
that detect Slight variations in surface body temperature, enabling early identification of febrile
conditions such as mastitis or heat stress in livestock, often before clinical signs manifest.
Photoplethysmography (PPG) which employs light based technology to calculate changes in

blood volume, allowing for Sustained monitoring of heart rate and vascular perfusion.
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This method is particularly useful in neonatal or small species where traditional
auscultation proves challenging. Infrared Thermography (IRT), is a non-contact imaging
technique, captures and maps thermal radiation emitted from the body to detect areas of
inflammation, stress induced hyperthermia, or vascular anomalies, making it well suited for use
in herd level diagnostics and in animals where physical handling is restricted , integrated into
collars, harnesses, or ear tag devices. The raw signals are Transformed into machine readable
form and transmitted wirelessly via protocols such as Bluetooth (for companion animals), Wi-
Fi (for high bandwidth clinical data), or LPWAN (for long range livestock monitoring) to cloud
based platforms. There, Al algorithms like CNNs or RNNs process the data in real time to detect
health anomalies, stratify behaviors, and support early disease detection. Owing to the
continuous and voluminous nature of sensor derived physiological data, accurate interpretation
necessitates the deployment of algorithmic processing mechanisms capable of immediate trend
extraction and anomaly detection ML algorithms particularly supervised models such as
random forests and SVMs are used to classify behavioral states and detect physiological
anomalies (Chambers et al., 2021).

111.1.2. Behavioral and Physiological Monitoring Using Wearable Sensors

For instance, ML can differentiate between normal movement patterns and early
lameness based on changes in stride frequency and symmetry in equine patients. A striking
example is provided by Chambers et al. (2021), who utilized DL specifically, CNNs to classify
canine behavior using a single collar-mounted accelerometer. Their model, trained on annotated
datasets of canine activities (walking resting, scratching, shaking), achieved high accuracy in
recognizing behavior in Field based practice settings. This exemplifies how DL can decode
subtle Kinetic patterns when paired with wearable accelerometers (motion detector), can
accurately classify complex canine behaviors (scratching, licking, resting) by analyzing subtle

kinetic data.

These DL algorithms autonomously convert raw motion patterns into structured,
interpretable outputs, enabling real-time, automated ethological assessments both in clinical
practice and home environments. This technology enhances welfare monitoring and supports
early assessments both clinical and at-home settings. Within the framework of clinical
veterinary practice, such technologies demonstrate substantial utility in domains of medical

management, notably in the surveillance of post-surgicalovery during inpatient care by
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continuous tracking of body temperature and activity helps detect early signs of infection, pain,

or surgical complications in dogs and cats.

111.1.3. Applications in Reproduction, Welfare, and Stress Detection

Likewise Reproductive management in ruminants: Wearables monitor rumination,
mounting behavior, and changes in core temperature to detect estrus and optimize insemination
timing, improving herd fertility outcomes.
Also have shown a significant impact in Stress and welfare surveillance: In livestock, variations
in locomotion patterns and heart rate are used as proxies for environmental or handling related

stress, allowing for timely welfare interventions (Horvath et al., 2021)

I11.1.4. Toward Predictive and Individualized Veterinary Care

The longitudinal nature of data captured enables veterinarians to Establish individualized
baselines for each animal, a critical step in phenotype driven predictive modeling (that uses
Al—especially supervised learning and deep neural networks, to identify patterns between
observable clinical traits (like fever or gait changes) and disease risk. As explained by (Qi et
al. 2024; Miotto et al. 2018). When integrated with EHRS, wearable data can fuel early warning
systems that alert Anomalies to constructed physiological parameters facilitating preclinical

detection of metabolic disorders, heat stress, or infectious processes.
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Figure 09: Wearable technologies in Veterinary medicine Illustrates the application of
wearable devices for continuous physiological monitoring and health assessment in animals.
Adapted and illustrated by the author from Chambers et al. (2021), Qi et al. (2024), and
Miotto et al. (2018).
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I11.2. Monitoring of Behavior and Vital Signs

I11.2.1. Wearable Sensors for Companion Animal Behavior Recognition

Sensor integrated monitoring systems are increasingly utilized to acquire both
physiological (cardiac rhythm, temperature) and biomechanical ( movement related) data in
veterinary settings. Captured metrics may encompass locomotor frequency, rest activity cycles,
nutritional intake patterns, hydration related behavior, and micro motor anomalies suggestive

of neurologic dysfunction.

These streams data streams are obtained via devices such as triaxial accelerometers,
inertial measurement units (IMUs), electrocardiographic modules, and thermal sensors, which
are embedded in collars, harness systems, or subcutaneous instrumentation. Once acquired, the
raw data is processed using ML and DL algorithms, which learn from labeled examples to
automatically recognize patterns, behaviors, or anomalies relative to established baselines. For
instance, (Chambers et al. 2021) illustrated that the inclusion of collar mounted
accelerometers, when coupled with deep neural networks, could accurately stratify canine
behaviors such as scratching, sniffing, and drinking. These fine-grained behavioral
distinguishing it are often clinically relevance for example; iterative scratching might suspect
atopic dermatitis or external parasitic ectoparasitic infestation thus enabling early therapeutic

intervention.

111.2.2. Al-Based Monitoring in Laboratory Animal Models

In close laboratory environments, the use of Al-integrated sensor technologies has
significantly increased the precision of behavioral analysis in small animal models. Notably,
(Chen et al. 2022) illustrated the application of wireless loT-based sensors in rodents to
automatically stratify behavioral states such as resting, rearing, and ambulatory activity.
Through the incorporation of advanced feature selection algorithms and imbalanced learning
strategies, the system was able to precisely identify infrequent or subtle behaviors markers that

may be indicative of early-stage neurological dysfunction, systemic stress responses.

111.2.3. Postoperative and Orthopedic Monitoring in Small Animals

In companion animal practice, wearable technologies notably those equipped with tri-
axial accelerometers have become important tools for postoperative monitoring and long term

orthopedic management. Following procedures such as cranial cruciate ligament repair or
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fracture stabilization, these devices enable clinicians to quantitatively assess limb use, gait
asymmetry, and mobility patterns by detecting motion over the X, Y, and Z axes . In opposite
to in clinic assessments, which are time restricted and frequently influenced by environmental
stress, data collected in home settings provide a more ecologically valid measure of recovery.
Al-driven behavior stratifying models apply these movement data to recognize subtle
deviations from normal locomotion, such as reduced weight bearing or altered stride frequency
parameters associated of complications like implant failure or delayed healing.

These data streams are transfered to cloud based platforms, allowing actuel time remote
evaluation and enabling clinicians to personnalise analgesic regimens or adjust physiotherapy
protocols rapidly. This system decreases reliance on subjective owner reports in anamnese
when diagnoses and enhances the standardization and accuracy sof follow up care. particularly,
accelerometry has proven utility in the case of feline orthopedic recovery, where clinical signs
such as lameness or discomfort are frequently understated. By providing objective metrics for
ambulation and limb loading, wearables support proactive, personalised rehabilitation planning.
In (Chambers et al., 2021) .

I11.2.4. Precision Livestock Farming and Reproductive Monitoring

Within the field of Precision Livestock Farming (PLF), the integration of Al-enabled
wearable sensors such as smart collars and ear tag systems has transitioned herd health
management by enabling ongoing, non-invasive monitoring of vital physiological and
behavioral metrics. These technologies are particularly effective in the early detection of
emerging conditions like in the case of subclinical mastitis an intramammary inflammatory
condition without showing pronounced signs ,thermistors embedded in smart collars or ear tags
detect localized increases of cutaneous temperature of the mammary gland. When this is
assoaciated with decreased of rumination, often tracked via jaw movement sensors, Al models
reconize these Faint anomalies and issue alerts for complementy examination for diagnostics

like somatic cell count testing.

This allows for timely intervention before productivity losses exacerbate . Similarly,
Initial phase lameness, often due to hoof or joint pathologies, is detected through accelerometers
that monitor Symmetry of limb motion, step frequency, and overall mouvement in three
dimensions (X, Y, Z). Changes in stride regularity or prolonged inactivity intervals are

interpreted by Al algorithms as Subclinical indicators of locomotor dysfunction, often emerging
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prior to the clinical manifestation of overt lameness, Estrus detection, an essential element of
reproductive efficiency, is enhanced through multimodal sensor input. Accelerometers capture
restlessness and mounting behavior, while thermistors detect rhythmic fluctuations in core
temperature. Gyroscopes and caudally affixed pressure sensing devices further validate
standing heat. These converged datasets allow the Al system to accurate estimation of the
optimal insemination period and notify herd breeders or veterinarians accordingly (James et
al. 2024). Moreover, the integration of these data streams supports widen welfare and
productivity outcomes. Thermal stress indices extracted from continuous temperature and
behavior monitoring inform environmental adjustments such as adjusting ventilation or
hydration regimes , to alleviate heat stress. By synthesizing movement (accelerometers),
temperature (thermistors), posture (gyroscopes), and mounting behavior, the Al system
constructs a contextual health profile for each animal. Ultimately, these Al-enabled PLF
(Precision Livestock Farming) systems enhance diagnostic accuracy, reproductive planning,
and herd management. They allow for individualized care within Extensive free range
production systems and represent a shift toward a data driven, prospective model that promotes

both productivity and animal welfare (James et al., 2024).as it demonstrated in figure 10.
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Figure 10 : Sensor applications in Veterinary and livestock management enabling real time
monitoring and data driven decision making in animal health and husbandry. Adapted by the
author from (Chambers et al., 2021; James et al., 2024).
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I11.3. Integration of Al in Animal Telemedicine

I11.3.1. Al-Integrated Telemedicine Platforms in Veterinary Care

Within veterinary medicine, Al-including telemedicine platforms constitutes a
significant development in remote clinical services, facilitating practitioners to mitigate animal
health across a range of species and environments, especially in rural, high volume, or resource

limited region (James et al., 2024; Ouyang, 2021).

111.3.2. Data Infrastructure: Interoperability and Cloud-Based Storage

The functional architecture of these platforms is initiated through the ongoing
acquisition of biometric and behavioral features from wearable or environmental sensors such
as rumination collars, thermistors, and accelerometers.Physiological and other behavioral
parameters are wirelessly transmitted to cloud based databases, where they are harmonized
using structured vocabularies like SNOMED-CT-Vet (Systematized Nomenclature of Medicine
Clinical Terms for Veterinary Medicine). Thus promoting data interoperability across clinics,
technologies, and geographic regions. (Ouyang, 2021) . Once the data are acquired, ML
algorithms embedded within the system perform real time analysis by comparing individual

animal metrics to herd level baselines and historical tendencies .

111.3.3. Predictive Surveillance and Spatial Risk Modeling

In addition, these platforms integrate geo tagged clinical records and environmental
sensor data into veterinary telemedicine platforms represents a significant advancement in
disease surveillance and outbreak forecasting. These systems not only track animal specific
physiological and behavioral parameters but also associate them within spatial and temporal
resolved and environmental frameworks, allowing for the prediction of localized disease risks.
For exemple, in the population concentration in urban animal shelters, where airborne
pathogens dessiminate rapidly, platforms equipped with GPS tagged data and instantaneous
environmental monitoring such as humidity, ambient temperature, or ammonia density can be
used to model the risk of Canine Infectious Respiratory Disease Complex (CIRDC). CIRDC is
a multifactorial syndrome involving pathogens like Bordetella bronchiseptica, canine
parainfluenza virus, and canine adenovirus, which are highly sensitive to air quality,
ventilation, and crowding. By applying ML algorithms to converged inputs, a spike in coughing

frequency from EMRs, increasing ammonia levels detected by ambient sensors, and high
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animal turnover in a geo specific shelter, the system can declare a potential CIRDC outbreak
before clinical cases rise significantly (Bhowmik, 2021) .

I11.3.4. One Health Integration and Public Health Implications

These predictive foresight can then activate biosecurity alerts, guide ventilation
management, and Steer vaccination or isolation protocols, Limiting pathogen dissemination.
This multimodal, Prognostic surveillance model manifests the One Health approach, linking
animal health data with environmental and epidemiological information relevant to public
health. It facilitates Immediate decision support not only for veterinarians but also for public
health authorities, promoting harmonized interventions to emerging zoonotic threats (Ouyang,
2021 ; James et al., 2024).
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Biometric and behavioral data
acquired from sensors.
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Data harmonized using
SNOMED-CT-Vet for
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Real-time Analysis
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Figure 11: Al in Veterinary Telemedicine Illustrates the integration of Al in remote
veterinary care, enhancing monitoring and management in diverse and resource limited

settings.Adapted by the author from (Ouyang, 2021 ; James et al. 2024).
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CHAPTER IV: PREDICTIVE ANALYTICS IN VETERINARY
PHARMACOTHERAPY DEVELOPMENT

IV.1. Machine Learning in Drug Development

veterinary pharmacology through Al is being shifted from how therapeutics such as
identifying, optimizying , and evaluating , notably in the face of rising zoonotic threats,
antimicrobial resistance, and the complexity of species specific pathophysiology. the
incorporation of ML algorithms into veterinary drug discovery offers a precise, data centric
alternative to traditional linear pharmacological pipelines, allowing for both accelerated

compound screening and enriched therapeutic targeting.

In the context of precision veterinary pharmacology, Al offers powerful function
analyzing complex biochemical and physiological parameters to enhance drug development
and therapeutic decision making. One of it application lies in the use of chemical structure data,
notably through SMILES (Simplified Molecular Input Line Entry System) strings and

molecular fingerprints.
IV.1.1. Smiles

For the case of the SMILES is a formal representation schema that encodes a molecule’s
structure into a single line of ASCII characters(ASCIlI : American Standard Code for
Information Interchange) is a character encoding standard that represents text in computers and
digital systems using a set of 128 characters including letters, digits, punctuation marks, and

control characters ) , making it easily interpretable by both humans and ML algorithms.

Each atom is represented by its chemical symbol ( "C" for carbon, "O" for oxygen), and
bonds are Identified as special characters: single bonds are implicit or shown as "-", double
bonds as "=", triple bonds as "#", and aromatic bonds often by lowercase letters. Parentheses
indicate branches in molecular chains, and numbers signify ring closures.For example, the
SMILES string for ethanol is "CCO", which express a two carbon chain with a terminal

hydroxyl group (—OH).
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Figure 12: Schematic Representation of the SMILES Encoding Workflow, Adapted and
modified by the author from Qi et al. (2024).

This format simplifies the input for cheminformatics models and enables algorithms
particularly graph based DL systems to interpret the molecular graph as a sequence without the
need for complex molecular drawing or file types like MOL or SDF (The MOL format encodes
detailed structural information of a single molecule—such as atom coordinates, bond types,
stereochemistry, and charge which supports molecular docking, toxicology prediction, and
computational simulations essential in early-stage veterinary pharmacology (Capecchi,
Probst, & Reymond, 2020). In comparison, the SDF format builds upon the MOL
specification by allowing storage of multiple molecules alongside annotated descriptive data,
including physicpochemical properties (Property , LogP (Partition Coefficient) , Solubility ,
pKa , Topological Polar Surface Area (TPSA) , pharmacological values ( MIC (Minimum
Inhibitory Concentration) , ICso (Half-maximal Inhibitory Concentration) ,ECso (Effective
Concentration) , Ki (Inhibition Constant), and species-specific therapeutic data. This makes
SDF files indispensable for high throughput screening and ML based modeling, especially in
developing species appropriate therapies and optimizing drug profiles across diverse animal
populations (Qi et al., 2024).

For exemple retrived from (PubChem, 2024) :

Enrofloxacin :

O=C(O)\C3=C\N(c2cc(N1CCN(CC)CC1) c(F)cc2C3=0) Cc4CC4
Meloxicam :

Cclence(sl) N=C(C1=C(O)c2ccccc2S(=0) (=0) N1C) O

IV.1.2 .Molecular fingerprints

Molecular fingerprints are foundational computational tools in drug discovery, serving
to represent the chemical structure of compounds as fixed length binary or numerical vectors.

Unlike SMILES (Simplified Molecular Input Line Entry System) strings that encode molecular
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structure as linear ASCII text, molecular fingerprints extract structural patterns such as
functional groups, atom pairs, and ring systems into bit vectors that are computationally
tractable for ML algorithms and similarity searches. Each bit in the fingerprint corresponds to
a preestablished molecular descriptor; if the corresponding substructure is present in the
molecule, the bit is set to 1", otherwise it remains "0". These descriptors are typically derived
from the molecular graph parsed from 2D or 3D chemical structures (Capecchi et al., 2020).

Molecular Fingerprint Generation Process

] Identification Binary
Chemical Molecular i .
of constituent feature Molecular
Structure —> Graph . . .
. molecular encoding 1 Fingerprint
2D or 3D Parsing
features or0

Figure 13: Molecular Fingerprint Generation Process Binary encoding scheme indicating the
presence (1) or absence (0) of molecular substructures. Adapted and illustrated by the author
from Capecchi et al. (2020).

Within veterinary drug development, molecular fingerprints facilitate essential tasks
including virtual screening, ligand receptor matching, toxicity prediction, and quantitative
structure activity relationship (QSAR) modeling. Capecchi, Probst, and Reymond (2020)
introduced the MAP4 (MinHashed Atom Pair up to four bonds) which is a newer fingerprint
that combines atom pair fingerprints (which consider distances between atom types) with
MinHashing, a technique that compresses the fingerprint into reducing dimensional
representation while preserving similarity(MAP4 can be used to compare antimicrobial
peptides (AMPSs) or complex natural products), an advanced algorithm that integrates circular
substructures with atom pair distance relationships. Unlike fingerprints such as ECFP4 taht
encodes the local chemical environment around each atom in a molecule by considering circular
substructures up to a radius of 2 bonds (hence “4” in ECFP4, meaning a diameter of 4 bonds).
It generates a binary vector where each bit represents the presence or absence of specific atom-
centered substructures.Witthin veterinary pharmacology perspective, the application of such
fingerprinting techniques is highly impactful. Qi et al. (2024) suggest the integration of
molecular fingerprints into ML pipelines for predictive modeling of pharmacokinetic (PK) and

pharmacodynamic (PD) parameters. For instance, analysis of MAP4 fingerprints of NSAID
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analogues such as meloxicam can reveal structural motifs associated with species specific

toxicity, including renal sensitivity in felines.

MAP4 encoding of jJk

r1: O=c |15| c(c)

" e - <
4 ,’jﬂ " A ) r2: O=c(c)[nH]|15|c(cc)cc
1§
B ‘
\ -

Figure 14 : MAP4 Atom Pair Encoding Strategy Circular substructures centered around atoms
j and k are extracted at radii r = 1 and r = 2 and represented as SMILES strings. These fragments
are then arranged lexicographically and separated by the topological bond distance between the
atom pair along the shortest path (highlighted in blue). The resulting character strings constitute
the MAP4 atom-pair molecular fragments for each radius, as described in Capecchi et al.
(2020).

Molecular fingerprints serve as algorithmically efficient representations of chemical
compounds as shown in figure 15, capturing key structural parameters such as functional
groups or substructures. These vectors facilitate rapid similarity comparisons and are central to
ML driven drug repurposing, toxicity prediction, and antimicrobial modeling in veterinary
medicine. For exemple, structurally similar NSAIDs like meloxicam and carprofen can be
grouped by ML algorithms to evaluate therapeutic potential or species-specific metabolism
risks (Sahayasheela et al., 2022).

33/53



CHAPTER IV: PREDICTIVE ANALYTICS IN VETERINARY

Machine Learning Analysis of NSAIDs
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Figure 15: Machine Learning-Based Analysis of NSAIDs, visualization of pharmacokinetic
and pharmacodynamic (PK/PD) profiles using machine learning methodologies. Adapted and
created by the author based on Datta et al. (2021).

Within veterinary molecules such as enrofloxacin or flunixin meglumine permit
automated computational models to forcast critical pharmacological attributes including
solubility, receptor binding affinity, and species-specific toxicity. This is particularly impactful
for identifying safer analogues in sensitive species, such as felines prone to NSAID consisting
of nephrotoxicity. Al assists facilitating the incorporation of omics data into diagnostic
protocols through the computational interpretation of transcriptomic datasets to uncover
biomarkers like IL-6 or haptoglobin in diseases such as bovine respiratory disease, supporting
early metaphylactic intervention. In parallel, immunological markers such as immunoglobulin
Y (IgY) titers, which indicate humoral immune responses, and T-cell activation metrics,
reflective of cellular immunity, serve as key diagnostic markers of host pathogen interaction

state.

When following a consistent analytical structure collected and digitized, these
biomarkers can be integrated into ML algorithms especially supervised models like random
forests or support vector machines to stratify animals based on their likelihood of harboring

subclinical infections, such as Salmonella enterica or Campylobacter jejuni.

For instance, birds manifesting elevated IgY titers paired with prolonged T-cell
proliferation responses may be recognized as active or past carriers, even in the absence of overt
clinical symptoms. This provides continuous classification of risk at the flock level. As
demonstrated in the literature (Qi et al., 2024; Alsulimani et al., 2024). Advanced ML
techniques like Support Vector Machines (SVMs), Random Forests, and deep neural networks
are widely used with in veterinary pharmacology. These algorithms differentiate toxicity,
forecast ligand receptor affinity, and infer pharmacokinetics (PK) and pharmacodynamics (PD),

ML allows comprehensive modeling of host pathogen-drug interactions.
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Molecular fingerprints and machine learning are reshaping veterinary drug
development, offering scalable, data-oriented approaches to therapeutic innovation. Their
integration into precision veterinary medicine aligns with ethical standards and the One Health
framework, as emphasized by Qi et al. (2024), Vamathevan et al. (2019), and Sahayasheela
et al. (2022). For instance, two non-steroidal anti-inflammatory drugs (NSAIDs) like
meloxicam and carprofen may have similar fingerprint patterns due to shared structural motifs,
allowing machine learning models to group them by therapeutic action or species-specific
metabolism.as shown in the figure 16.
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Molecular Toxicity
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Toxicants
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—> Activity —_—
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Figure 16: Application of Molecular Fingerprints in Drug Discovery, illustration of the
operational framework and role of molecular fingerprints in computational drug discovery.

Developed by the author based on Sahayasheela et al. (2022).

The structural encodings of veterinary pharmacological agents such as enrofloxacin or
flunixin meglumine permit ML algorithms to examine compound configurations to estimat the
core pharmacological behaviors, comprising solubility, species specific toxicity, and receptor
binding affinity. Additionally, deliver individualized veterinary treatment through integration
of pharmacokinetic (PK) and pharmacodynamic (PD) modeling. These models characterize the
PK and PDprofiles of drugs in how they are absorbed, distributed, metabolized, and eliminated,
alongside their physiological effects In the treatment of canine epilepsy with phenobarbital, Al

can synthesize PK data (plasma concentrations over time) with PD outcomes (seizure
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frequency) to recommend the safest dosing that balances efficacy and safety, minimizing
undesirable effects like sedation or hepatotoxicity.

Within parasite management, ML is increasingly used to enhancing the precision and
safety of antiparasitic therapeutique interventions through in silico modeling. These
computational models analyze genomic, transcriptomic, and biochemical data from both host
and parasite to simulate metabolic interactions and predict pharmacodynamic responses. This
enables veterinarians to select the most effective antiparasitic agents while minimizing the risk

of host toxicity.

The approach is particularly valuable in multi species farming systems, where off-label
drug use is common and poses risks of resistance or adverse effects due to interspecies
metabolic differences ,for example, such models can simulate how an antiparasitic drug like
ivermectin interacts with the nervous system of nematodes while simultaneously estimating
potential toxicity in a specific species (goats or alpacas), which may have different metabolic
rates or detoxification pathways.

ML models trained on PK and PD data can predict cross-species efficacy and tolerance
of drugs such as macrocyclic lactones and support resistance management strategies by
identifying molecular resistance markers like B-tubulin gene mutations. These models help in
anthelmintic prudent managment by recommending optimized treatment protocols, promoting
individualized therapy, and reducing the emergence of drug-resistant helminths, thereby
aligning with both animal welfare and One Health objectives (Qi et al., 2024; Sahayasheela et
al., 2022).

IV.2. Al and Antimicrobial Resistance

Utilizing machine learning (ML) techniques within artificial intelligence (Al)
frameworks to address antimicrobial resistance (AMR) in veterinary practice marks a critical
progression in diagnostic methodologies and the strategic management of antimicrobial
therapies. According to the analyses presented by Alsulimani et al. (2024) and Ali et al.
(2023), Al's ability to process and interpret high-dimensional, heterogeneous datasets positions
it as a powerful tool for facilitating early detection of antimicrobial resistance (AMR), guiding
evidence-based antimicrobial selection, and enabling longitudinal surveillance across animal

populations. These applications are particularly critical in veterinary settings, where
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microbiological testing infrastructure may be restricted, especially in rural or resource limited
environments.

Through supervised ML techniques such as random forests, support vector machines (SVMs),
and deep neural networks, these models learn to associate genomic or clinical patterns with

antimicrobial susceptibility or resistance outcomes.as illustrated in the figure 17.
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Figure 17: Schematic Representation of an Antimicrobial Resistance Prediction Model
Highlighting Key Genetic Markers. The model incorporates the detection of mecA
(conferring methicillin resistance) and blaZ (encoding p-lactamase, an enzyme responsible
for the degradation of B-lactam antibiotics). Adapted and illustrated by the author based on
data from Ali et al. (2023).

Al models are developed through exposure to multifactorial datasets encompassing a wide array

of clinical, Imaging, and physiological variables, such as:
IV.2.1. Genomic sequences of bacterial isolates

Genomic sequencing of bacterial isolates including Escherichia coli from bovine

mastitis, Salmonella spp. in poultry, and Staphylococcus pseudintermedius from canine
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dermatological cases, forms the baes of Al-driven AMR prediction models within veterinary

practice.

Primary, isolates undergo whole genome sequencing (WGS), producing comprehensive
data sets that include resistance genes, mobile genetic elements, and other genomic features. In
the next stage, Al systems perform pattern extraction by scanning these genomes for known
resistance determinants such as p-lactamases (blaz, blaCTX-M), macrolide resistance genes
(erm, msr), and methicillin-resistance gene (mecA), while also assessing the context of
surrounding sequences ( plasmids, integrons, transposons) that influence gene expression and
transmission. During model training, supervised algorithms such as SVMs, Random Forests, or
Neural Networks, are calibrated using labeled WGS data linked to phenotypic outcomes like
minimum inhibitory concentrations (MICs) or traditional susceptibility testing. Once deployed,
these Al-enabled platforms can efficiently infer resistance phenotypes in clinical contexts for
example, identifying extended-spectrum B-lactamase (ESBL) production in Escherichia coli
isolated from dairy cattle, detecting quinolone-resistant Salmonella strains in poultry, or

flagging methicillin-resistant Staphylococcus pseudintermedius (MRSP) in canine patients.

This facilitates timely optimization of antimicrobial regimens. Integrated workflows
enable resistance predictions to be delivered within 24—48 hours into electronic health records
or laboratory information systems, thereby supporting evidence-based therapeutic decisions
grounded in structured and systematically acquired clinical data. Furthermore, consolidating
antimicrobial resistance profiles across multiple herds allows for the early recognition of
emergent resistance trends, thereby informing the development and deployment of targeted

regulatory and biosecurity interventions.

These Al-facilitated surveillance frameworks mark a strategic advancement in
veterinary microbiology, enabling expedited clinical decision-making, optimization of
therapeutic regimens, and improved disease management at the herd level (Ali et al., 2023;
Alsulimani et al., 2024).
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Figure 18: Machine Learning-Based Prediction of Antimicrobial Resistance in Veterinary
Clinical Settings (Adapted by author from Ali et al., 2023; Alsulimani et al., 2024).

IV.2.2. Phenotypic susceptibility profiles

Phenotypic antimicrobial susceptibility profiles, obtained through standardized
methodologies such as minimum inhibitory concentration (MIC) determination and disc
diffusion assays these profiles serve as critical input data within computational frameworks
designed to predict antimicrobial resistance (AMR) in veterinary clinical contexts.In applied
practice, each bacterial isolate such as Escherichia coli, Salmonella spp., or Staphylococcus
pseudintermedius is subjected to standardized in vitro susceptibility assays to evaluate its
response to selected antimicrobial agents ,to assess its susceptibility to a preselected set of
antimicrobial agents, thereby producing quantitative outputs such as minimum inhibitory
concentration (MIC) values or inhibition zone diameters, which serve as foundational inputs
for resistance profiling and Al model training. Al models incorporate these categorized
phenotypic results to learn associations between genomic or clinical features and observable
resistance phenotypes. For instance, a model trained with MIC values for g-lactam antibiotics
can precisely predict whether a Salmonella isolate satisfies the validated veterinary breakpoint
for resistance. Similarly, disc diffusion metrics, such as zone diameters for fluoroquinolones in
E. coli from poultry are used to calibrate prognostic classification performance of Al

algorithms. By connecting these phenotypic data with genotypic markers ( bla-type genes) and
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clinical metadata, machine learning systems can forecast antimicrobial resistance in under 48
hours, significantly reducing diagnostic turnaround time. Integration of these predictions into
electronic systems supports veterinarians in making scientifically validated therapeutic
strategies choosing narrow spectrum agents when susceptibility is confirmed or employing an
alternative therapeutic class with increased potency when resistance is predicted, while
simultaneously informing herd level clinical resource management policies. This synergy
between classical microbiology and Al thus enhances diagnostic precision, optimizes
therapeutic outcomes, and contributes to sustainable antimicrobial use in production and
companion animal settings (Ali et al., 2023; Alsulimani et al., 2024). As demonstrated in

figure 19,
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Figure 19: ML Driven Prediction of Antimicrobial Resistance in Veterinary Clinical practice
Illustration adapted and conceptualized by the author, based on data and methodologies from
Ali et al. (2023) and Alsulimani et al. (2024).

IV.2.3. Antimicrobial Stewardship and Surveillance in Veterinary Practice

Antimicrobial stewardship, as emphasized in the within Al integration, includes the
responsible and supported by observed outcomes use of antibiotics to retain their efficacy,
minimize resistance development, and enhance therapeutic outcomes across species. Within
veterinary medicine, especially in production animal systems such as dairy farming, Al-systems
provide a continuous surveillance which plays a pivotal role by analyzing aggregated datasets

to detect usage trajectories and emerging resistance risks.
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IVV.2.3.1. Surveillance-Driven Protocol Optimization: Case Example from Dairy Calves

For instance, when electronic medical records and treatment histories are mined using
ML models, patterns of antibiotic overuse such as the frequent empirical administration of
broad-spectrum cephalosporins, can be correlated with poor clinical outcomes or pathogen
shifts. In dairy calves, this has been linked to a higher incidence of Cryptosporidium parvum
infection recurrence, potentially due to microbiota disruption or immunosuppressive
consequences of inappropriate antimicrobial exposure. By recognizing these tendencies, Al
systems can generate stewardship recommendations suggesting narrower spectrum alternatives,
or even non antibiotic interventions such as fluid therapy, vaccination, or improved colostrum
management. Furthermore, these insights feed back into population level surveillance, allowing
veterinarians and farm managers to personalized herd health protocols based on instantaneous

resistance progression and inter species differentiated responses.

This adaptive feedback loop aligns with One Health principles by addressing
antimicrobial resistance not only as an individual animal concern, but also as a population and
public health issue. As highlighted by Alsulimani et al. (2024), the integration of Al into such
programs promote the responsible utilization antibiotics also for earlier intervention, targeted
drug use, and continuous monitoring, transitioning veterinary infectious disease control from

reactive to proactive, data informed strategies.

IV.2.3.2. Predictive AMR Modeling in Intensive Livestock Systems

In veterinary medicine, particularly within the domain of food producing animals,
artificial intelligence (Al)-driven predictive modeling for antimicrobial resistance (AMR)
serves as a cornerstone of modern herd-level health management and biosecurity. As
highlighted by Ali et al. (2023), these models are exceptionally valuable in intensive production
environments such as poultry farms and swine operations where high animal density increases
the risk of rapid dissemination of resistant pathogens, including Campylobacter and
Escherichia coli. The operational Framework begins with the collection of microbiological and

environmental data through sentinel surveillance strategies.

This may include fecal sampling, water or feed testing, and metadata on treatment
histories or environmental conditions. Al frameworks, especially those employing supervised
machine learning methodologies such as random forest classifiers or deep neural

architectures,these models are trained to discern associations between resistance phenotypes
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,such as fluoroquinolone-resistant Campylobacter ,and explanatory variables including
antimicrobial administration frequency, animal stocking density, and environmental parameters
such as ambient temperature and relative humidity.Upon completion of training, these models
exhibit the capability to forecast the emergence and possible propagation of antimicrobial
resistance (AMR) within livestock production settings. As an illustration, the detection of a
rising incidence of resistance to tetracyclines or third generation cephalosporins in swine

production environments may prompt system level adjustments.

The Al-driven framework may recommend context specific, data supported adjustments
to therapeutic or management protocols , These interventions may entail the optimization of
antimicrobial protocols to align with emerging resistance patterns , the cyclical use of different
antimicrobial classes to mitigate resistance development ,the extension of immunoprophylactic
strategies to reduce susceptibility within the population , or the enhancement of pathogen
containment protocols and hygiene standards in regions identified as transmission hotspots . The
integration of these predictive tools supports not only more judicious antimicrobial use but also
enables early, targeted intervention deacresing the likelihood of large-scale outbreaks and

economic losses as showun in figure 20.

Moreover, the surveillance data generated through these systems contributes to national
AMR monitoring frameworks and supports compliance with One Health objectives by reducing
zoonotic transmission risk to humans via food chains or environmental contamination .Within
veterinary practice these findings support the Adoption of targeted,informed therapeutic

strategies by veterinarians and farm managers, such as :

-Enforcing evidence informed constraints on the utilization of specific antimicrobial agents to
curb resistance development .
-Enhancing biosecurity in specific zones.

-Initiating group level vaccination or probiotic programs.(de la Lastra et al., 2024)
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Figure 20: Al-Based Antimicrobial Resistance Forecasting for Herd Level Surveillance and

Intervention Strategies. Adapted and illustrated by the author, based on data and methodology

from Ali et al. (2023).

Within veterinary practice these findings support the Adoption oftargeted,informed therapeutic

strategies by veterinarians and farm managers, such as :

-Enforcing evidence informed constraints on the utilization of specific antimicrobial agents to

curb resistance development .

-Enhancing biosecurity in specific zones.

-Initiating group level vaccination or probiotic programs (de la Lastra et al., 2024).

IV.2.3.3. Clinical Integration in Equine Practice and Strategic AMR Mitigationa

In equine veterinary practice, the integration of artificial intelligence (Al) with clinical data

is proving valuable in the early identification and management of multi drug resistant (MDR)

infections, particularly involving Streptococcus equi, the causative agent of strangles. As
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highlighted by Ali et al. (2023), Al models can process and correlate unstructured clinical notes
(such as physical examination findings, treatment history, or symptom progression) with
microbiological laboratory outputs, including culture results and antimicrobial susceptibility
profiles as demonstrated in the figure 21 .As Ali et al. (2023) emphasize, the core advantage
lies in shifting from reactive to proactive intervention moving beyond empirical prescribing

toward data-informed antimicrobial stewardship.

DN D= D= DI

Data Predictive
Integration Alerting
NLP extracts Pattern Al flags high risk Clinical
relevant terms Recognition patients for MDR Action
from records
(nasal discharge, ML models System
abscessed lymph  associate patterns recommends
nodes) pairthem with MDR S. equi isolation and
with lab- cases treatment
confirmed adjustments
resistance patterns Specialist referral
(resistance to or further
macrolides or B- diagnostics

lactams)

Figure 21 : Al-Enabled Management of Multidrug-Resistant (MDR) Infections in Veterinary
Contexts Illustration by the author, adapted from Ali et al. (2023).
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CHAPTERYV. LIMITATION AND RECOMMENDATIONS

V.1. Limitations of Al in Veterinary Practice

Despite its significant potential, the integration of artificial intelligence into veterinary medicine
is constrained by several critical challenges :

-Data Quality and Standardization: Veterinary datasets are often fragmented, variably
structured, and constrained by species-specific nuances.The absence of annotated data and
standardized terminologies restricts model generalizability, particularly for rare or non-
traditional species.

-Computational Resources and Network Support :Numerous veterinary clinics, particularly in
rural or resource-constrained areas, lack the requisite infrastructure to support effective Al
integration , including access to cloud infrastructure, integrated digital medical records, and
stable network connectivity.

-Imbalances in Training Data and Outcome Prediction :Predictive frameworks trained on
limited human or region-specific datasets may not perform reliably across diverse animal
cohorts.Diagnostic fidelity may be compromised when models are trained on datasets lacking
comprehensive representation of veterinary diversity.

-Limited Interpretability of DL Architectures : Numerous Al systems, especially those
employing DL frameworks, exhibit limited interpretability due to their inherently opaque
computational processes.Such limited transparency can impede the clinical validation of Al
outputs and potentially undermine the confidence of veterinary professionals in their
application.

-Ethical Considerations in Al Deployment : The regulatory and ethical infrastructure governing
Al applications in veterinary medicine is still in its formative stages, lacking comprehensive
standards for responsible deployment . Salient concerns encompass data governance,
confidentiality, legal liability, and intellectual property considerations , particularly within
collaborative or multi-institutional veterinary frameworks.

-Veterinary Workforce Competency and Educational Preparedness : The absence of structured
education in Al among veterinary practitioners constitutes a significant impediment to effective
adoption and utilization of Al-driven tools. In the absence of sufficient training and institutional
support, there remains a tangible risk of Al tool misapplication or hesitancy toward their

integration in clinical practice.
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V.2. Recommendations

To mitigate the aforementioned limitations and promote the responsible and effective
integration of artificial intelligence within veterinary practice, the following strategic
recommendations are advanced:

-Harmonization and System Compatibility:The implementation of universally accepted
terminologies—such as the SNOMED-CT Veterinary Extension—and the alignment of data
structuring protocols are essential to facilitate interoperability between diagnostic laboratories,
clinical settings, and artificial intelligence systems.

-Expansion of datasets encompassing a wide range of animal : Directed resource allocation is
essential for the development of comprehensive, taxon-specific datasets to support robust Al
model training. Cross-sectoral partnerships are pivotal in facilitating this endeavor ,
collaborative efforts encompassing academic institutions, veterinary practitioners, and public
health stakeholders are fundamental to ensuring balanced representation across species and
epidemiological contexts.

-Comprehensibility of Computational Outputs : Priority should be given to the advancement
and deployment of transparent (‘white-box’) artificial intelligence frameworks that facilitate
interpretability and clinical accountability. Such systems ought to enable veterinary
professionals to trace diagnostic reasoning and assess algorithmic consistency, especially
within contexts involving critical clinical decisions.

-Advancement of Digital and Technological Capacity :Investment from public institutions and
industry partners is essential to strengthen digital capacities within veterinary systems, with
particular emphasis on addressing infrastructural deficits in underserved settings.This
encompasses the provision of financial support for the implementation of advanced diagnostic
platforms, interoperable electronic health record systems equipped for Al integration, and
scalable cloud-based data management infrastructure.

-Curricular Reform for Al Proficiency in Veterinary Training : Foundational and advanced
competencies in Al should be systematically integrated into veterinary curricula at both
undergraduate and postgraduate levels to ensure future practitioners are proficient in the
application of digital tools in clinical and research contexts.Educational programs should
prioritize the development of both technical proficiency and ethical acumen concerning the
deployment of Al in veterinary contexts.

-Policy Frameworks for Ethical and Regulatory Compliance : It is imperative that national and

international veterinary oversight bodies establish comprehensive frameworks for the

46 /53



CHAPTER V. LIMITATION AND RECOMMENDATIONS

validation and continuous evaluation of Al models deployed in clinical settings.ongoing
performance monitoring following deployment, as well as clearly delineated provisions for
clinical accountability.
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Conclusion

The integration of Al including ML, DL, and NLP has markedly reshaped the landscape
of veterinary biomedical sciences. This project systematically examines Al-driven innovations
across key domain including diagnostic imaging, parasitological surveillance, predictive
epidemiology, AMR monitoring, drug discovery,biosensor-based physiological analytics , and

veterinary telemedicine.

Collectively facilitate a transition from passive to predictive, data-informed clinical
decision-making, thereby enhancing diagnostic sensitivity, specificity, and temporal precision.
Al-enabled platforms ,such as the Vetscan Imagyst® for fecal egg quantification and CNNs for
thoracic radiographic interpretation , have exhibited diagnostic efficacy on par with and in
certain scenarios exceeding traditional approaches, particularly when deployed on curated,
species-specific datasets. In the context of AMR mitigating , Al technologies have augmented
early detection of resistance tendencies , optimized antimicrobial selection, and supported
targeted intervention strategies, aligning veterinary care with One Health imperatives.
furthermore , the integration of Al-enabled wearable devices and remote telemedicine platforms
to significantly improved access to continuous health surveillance and veterinary consultation

in remote or resource-limited settings.

Ultimately, Al serves not as a replacement for clinical expertise, but as a powerful
augmentative tool , increasing diagnostic precision, expediting clinical triage, and supporting
evidence-based interventions across diverse species, clinical systems, and geographies

contexts.
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