See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341709320

#### Aide-mémoire de parasitologie vétérinaire

| Book · M  | lay 2020                                     |                                 |
|-----------|----------------------------------------------|---------------------------------|
| CITATIONS |                                              | READS                           |
| 0         |                                              | 1,911                           |
| 1 author  | r:                                           |                                 |
|           | Mohamed Gharbi                               |                                 |
| TO        | Ecole Nationale de Médecine Vétérinaire      |                                 |
|           | 190 PUBLICATIONS 1,697 CITATIONS             |                                 |
|           | SEE PROFILE                                  |                                 |
|           |                                              |                                 |
| Some of   | the authors of this publication are also wor | king on these related projects: |



Theileriososis View project




DFG project "Molecular epidemiology network for promotion and support of delivery of life vaccines against Theileria parva and Theileria annulata infection in Eastern and Northern Africa" (DFG project SE862/2-1) View project

# AIDE-MÉMOIRE

# PARASITOLOGIE VÉTÉRINAIRE

MOHAMED GHARBI



# NexGard®

UNE NOUVELLE DÉFINITION DE LA LUTTE CONTRE LES PARASITES EXTERNES





# Aide-mémoire de parasitologie vétérinaire

# Aide-mémoire de parasitologie vétérinaire

#### Mohamed Gharbi

Préface du Pr. Philippe Dorchies Professeur honoraire de Parasitologie École nationale vétérinaire de Toulouse

#### Du même auteur

Mes conseils pour réussir sa carrière scientifique. 159 pages. Tunis, 2019.

Mes conseils pour publier un article scientifique. 117 pages. Tunis, 2020.

Copyright © 2020 Mohamed Gharbi ISBN: 978-9938-59-125-5

Tous droits réservés

#### Préface

#### Voici pourquoi j'ai aimé ce livre

Philippe Dorchies Professeur honoraire de Parasitologie École nationale vétérinaire de Toulouse

A une époque où le pianotage sur le Smartphone le plus basique apporte à toute interrogation des masses de données qu'il faut savoir ou pouvoir trier, les réponses fournies par les sites dédiés aux parasites des animaux sont nombreuses mais de qualité et surtout de fiabilité variables. Elles concernent aussi bien le Kamchatka que l'Ouganda et le vétérinaire tunisien n'en tirera aucun bénéfice. Au contraire, un précis comme celui que présente le Pr Mohamed Gharbi se révèle un outil indispensable pour toute personne amenée à se confronter au parasitisme des animaux pour le dépister, l'identifier et le contrôler.

L'originalité de ce nouvel ouvrage réside en particulier dans sa présentation en de nombreux tableaux complétés de textes simples et explicatifs. Ce n'est pas un traité de parasitologie, c'est une synthèse originale qui remet en mémoire cette foule de parasites pour lesquels il faut quelques fois, rapidement et sûrement, retrouver les caractéristiques principales : leurs localisations, leur fréquence et leur importance ainsi que les moyens simples de les identifier et de les contrôler. C'est un véritable aide-mémoire qui va pouvoir avoir sa place dans la bibliothèque mais surtout dans la poche de tout vétérinaire.

Dans un format compact pour un contenu synthétique, le Pr Mohamed Gharbi avec beaucoup de clarté réussit ce pari. Sa bonne connaissance des parasites des animaux en Tunisie ainsi que sa passion de la transmission des connaissances sont des gages de l'utilité de cet ouvrage et de sa grande qualité.

Toulouse, 26 janvier 2020

## Sommaire

| Liste des tableaux                                           | 12  |
|--------------------------------------------------------------|-----|
| Liste des figures                                            | 16  |
| Liste des abréviations                                       | 17  |
| Généralités                                                  | 19  |
| Contexte général des parasitoses en Tunisie                  | 21  |
| Concepts de base en parasitologie                            | 26  |
| Parasites des animaux domestiques                            | 31  |
| Parasites des carnivores                                     | 33  |
| Parasites des bovins                                         | 38  |
| Parasites du dromadaire                                      | 46  |
| Parasites des petits ruminants                               | 50  |
| Parasites des équidés                                        | 57  |
| Parasites du lapin                                           | 62  |
| Parasites des nouveaux animaux de compagnie                  | 65  |
| Parasites des volailles                                      | 68  |
| Parasites du genre Eimeria infectant les animaux domestiques | 74  |
| Cas particulier des protozoaires du genre Sarcocystis        | 78  |
| Tiques des animaux domestiques                               | 80  |
| Rôle vecteur des arthropodes                                 | 87  |
| Principaux pathogènes transmis par les tiques en Tunisie     | 89  |
| Pathogènes transmis par d'autres arthropodes                 | 95  |
| Techniques de diagnostic de laboratoire des parasitoses      | 105 |
| Diagnostic sur l'animal                                      | 109 |
| Recherche du prurit                                          | 111 |

| Examen à la lampe de Wood                                | 115       |
|----------------------------------------------------------|-----------|
| Choix de la zone du prélèvement cutané                   | 118       |
| Calques cutanés                                          | 120       |
| Calque cutané avec une lame                              | 121       |
| Calque cutané avec un film adhésif                       | 122       |
| Trichogramme                                             | 123       |
| Brossage de l'animal                                     | 125       |
| Raclage cutané                                           | 126       |
| Digestion potassique                                     | 127       |
| Prélèvement du cérumen                                   | 128       |
| Coprologie                                               | 129       |
| Diagnostic coprologique                                  | 131       |
| Examen macroscopique                                     | 135       |
| Examen direct                                            | 136       |
| Technique à la cellophane adhésive                       | 137       |
| Technique de flottation                                  | 138       |
| Coprologie quantitative (technique de Mc Master)         | 139       |
| Recherche des larves de strongles respiratoires          | 140       |
| Recherche d'œufs de trématodes                           | 143       |
| La technique de Ziehl Nielsen modifiée                   | 144       |
| La technique de Telemann                                 | 146       |
| Recherche de Giardia spp.                                | 148       |
| Comment interpréter les résultats d'analyses coprologie  | ques ?    |
|                                                          | 149       |
| Recherche des parasites du sang et du système des phagod | cytes     |
| mononucléés                                              | 153       |
| Technique de Giemsa                                      | 155       |
| Prélèvement du suc ganglionnaire                         | 160       |
| Recherche des microfilaires chez les carnivores domes    | tiques162 |
| Recherche de Thelazia spp. chez les mammifères dont      | estiques  |
|                                                          | 166       |
| Lutte contre les parasites des animaux domestiques       | 169       |
| Acaricides et insecticides                               | 175       |
| Piroplasmicides                                          | 193       |
| Autres anti-protozoaires                                 | 196       |

| Anthelminthiques                                              | 200 |
|---------------------------------------------------------------|-----|
| Nouvelles molécules antiparasitaires en médecine vétérinaire  | 212 |
| Vaccins antiparasitaires en médecine vétérinaire              | 214 |
| Lutte contre les strongyloses digestives des petits ruminants | 222 |
| Lutte contre les strongyloses des équidés                     | 234 |
| Lutte contre les helminthoses du chien                        | 237 |
| Lutte contre les tiques en Tunisie                            | 249 |
| Postface                                                      | 255 |
| Quelques traductions de noms de parasites                     | 259 |
| Bibliographie                                                 | 265 |

### Liste des tableaux

| Tableau 1 : Principaux ectoparasites des carnivores                | 33   |
|--------------------------------------------------------------------|------|
| Tableau 2 : Endoparasites des carnivores                           | 34   |
| Tableau 3 : Le chien hôte définitif de plusieurs espèces de tænia  | 36   |
| Tableau 4 : Caractéristiques générales des principaux parasites de | es   |
| carnivores domestiques                                             | 36   |
| Tableau 5 : Principaux ectoparasites des bovins                    | 38   |
| Tableau 6 : Principaux endoparasites des bovins                    | 39   |
| Tableau 7 : Principaux cestodes parasites des bovins               | 41   |
| Tableau 8 : Caractéristiques générales des principaux parasites de | S    |
| bovins                                                             | 42   |
| Tableau 9 : Caractéristiques générales des espèces de coccidies de | es   |
| bovins                                                             | 45   |
| Tableau 10: Principaux ectoparasites du dromadaire                 | 47   |
| Tableau 11 : Principaux endoparasites du dromadaire                | 47   |
| Tableau 12 : Caractéristiques générales des espèces de coccidies o | lu   |
| dormadaire                                                         | 48   |
| Tableau 13 : Parasites zoonotiques des camélidés                   | 49   |
| Tableau 14: Principaux ectoparasites des petits ruminants          | 50   |
| Tableau 15: Principaux endoparasites des petits ruminants          | 51   |
| Tableau 16: Principaux cestodes parasites des ovins                | 53   |
| Tableau 17 : Caractéristiques générales des principaux endoparas   | ites |
| des petits ruminants                                               | 53   |
| Tableau 18 : Caractéristiques générales des espèces de coccidies o | les  |
| ovins                                                              | 5.5  |

| Tableau 19 : Caractéristiques générales des espèces de coccidies d  | es |
|---------------------------------------------------------------------|----|
| caprins                                                             | 56 |
| Tableau 20 : Principaux ectoparasites des équidés                   | 57 |
| Tableau 21 : Principaux endoparasites des équidés                   | 58 |
| Tableau 22 : Principaux cestodes parasites des équidés              | 59 |
| Tableau 23 : Caractéristiques générales des principaux parasites de | es |
| équidés                                                             | 59 |
| Tableau 24 : Caractéristiques générales des espèces de coccidies d  | es |
| équidés                                                             | 61 |
| Tableau 25 : Principaux ectoparasites du lapin                      | 62 |
| Tableau 26 : Principaux endoparasites du lapin                      | 63 |
| Tableau 27 : Caractéristiques générales des espèces de coccidies d  | u  |
| lapin                                                               | 64 |
| Tableau 28 : Principaux ectoparasites des petits mammifères         | 65 |
| Tableau 29 : Principaux endoparasites des petits mammifères         | 66 |
| Tableau 30 : Principaux acariens ectoparasites des volailles        | 68 |
| Tableau 31 : Principaux agents de gales des volailles               | 68 |
| Tableau 32: Principaux poux boryeurs des volailles                  | 69 |
| Tableau 33: Autres insectes ectoparasites des volailles             | 70 |
| Tableau 34 : Principaux parasites du tube digestif des volailles    | 70 |
| Tableau 35 : Caractéristiques générales des principaux parasites    |    |
| digestifs des volailles                                             | 71 |
| Tableau 36 : Caractéristiques générales des espèces de coccidies d  | u  |
| poulet                                                              | 72 |
| Tableau 37 : Caractéristiques générales des espèces de coccidies d  | es |
| autres volailles d'élevage                                          | 73 |
| Tableau 38 : Tableau synthétique des espèces d' <i>Eimeria</i> spp. |    |
| affectant les animaux domestiques                                   | 74 |
| Tableau 39 : Tableau synthétique des espèces de Sarcocystis spp.    |    |
| affectant l'Homme et les animaux domestiques                        | 79 |
| Tableau 40 : Principales caractéristiques des tiques des animaux    |    |
| domestiques présentes en Tunisie                                    | 84 |
| Tableau 41: Principaux pathogènes transmis par les tiques chez to   |    |
| les mammifères                                                      | 90 |

| Tableau 42 : Principaux pathogènes transmis par les tiques            |     |
|-----------------------------------------------------------------------|-----|
| Rhipicephalus sanguineus chez le chien                                | 90  |
| Tableau 43: Principaux pathogènes transmis par les tiques chez l      | es  |
| bovins                                                                | 91  |
| Tableau 44 : Principaux pathogènes transmis par les tiques chez l     | es  |
| ovins                                                                 | 92  |
| Tableau 45: Principaux pathogènes transmis par les tiques chez l      | les |
| équidés                                                               | 93  |
| Tableau 46: Principaux pathogènes transmis par les tiques chez l      | es  |
| volailles                                                             | 93  |
| Tableau 47 : Pathogènes transmis par les tiques chez les tortues      | 94  |
| Tableau 48 : Principaux pathogènes transmis par les simulies          | 97  |
| Tableau 49 : Principaux pathogènes transmis par les tabanidés         | 98  |
| Tableau 50 : Principaux pathogènes transmis par les phlébotome        |     |
| Tableau 51 : Principaux pathogènes transmis par les puces             | 100 |
| Tableau 52 : Pathogènes transmis par les poux de l'Homme              | 101 |
| Tableau 53: Principaux pathogènes transmis par les poux chez le       |     |
| animaux                                                               | 102 |
| Tableau 54 : Principaux pathogènes transmis par les <i>Culicoides</i> | 102 |
| Tableau 55 : Principaux pathogènes transmis par les culicidés         | 103 |
| Tableau 56 : Comment faire la différence entre <i>Candida</i> et      |     |
| Malassezia ?                                                          | 120 |
| Tableau 57 : Éléments de diagnose différentielle entre les deux       |     |
| espèces de microfilaires                                              | 165 |
| Tableau 58 : Choix du type de prélèvement en fonction de l'agent      |     |
| pathogène recherché                                                   | 167 |
| Tableau 59 : Acaricides et insecticides ayant une autorisation de i   |     |
| sur le marché en Tunisie                                              | 175 |
| Tableau 60: Antiparasitaires utilisables chez les abeilles            | 180 |
| Tableau 61: Antiparasitaires sans autorisation de mise sur le mar     |     |
| en Tunisie                                                            | 182 |
| Tableau 62 : Calcul des concentrations des pesticides                 | 186 |
| Tableau 63: Principaux piroplasmicides utilisables chez les anim      |     |
| domestiques                                                           | 193 |
| Tableau 64 : Protocoles de lutte contre les babésioses                | 195 |

| Tableau 65 : Principaux anti-coccidiens                         | 196    |
|-----------------------------------------------------------------|--------|
| Tableau 66: Principaux anti-leishmaniens                        | 198    |
| Tableau 67: Autres antiprotozoaires                             | 199    |
| Tableau 68: Posologie et voies d'administration des             |        |
| anthelminthiques chez les animaux                               | 201    |
| Tableau 69: Associations d'anthelminthiques chez les animaux    | [      |
| domestiques                                                     | 203    |
| Tableau 70 : Anthelminthiques utilisés chez les bovins          | 204    |
| Tableau 71 : Anthelminthiques utilisés chez les ovins           | 205    |
| Tableau 72 : Anthelminthiques utilisés chez les équidés         | 206    |
| Tableau 73 : Anthelminthiques utilisés chez les volailles       | 207    |
| Tableau 74: Protocole d'application des anthélminthiques che    | z les  |
| volailles                                                       | 208    |
| Tableau 75 : Anthelminthiques utilisés chez le chien            | 209    |
| Tableau 76 : Anthelminthiques utilisés chez le chat             | 210    |
| Tableau 77 : Anthelminthiques utilisés chez le porc             | 211    |
| Tableau 78: Principes généraux des traitements anthelminthique  | ues230 |
| Tableau 79 : Différence entre résistance et résilience          | 233    |
| Tableau 80: Anthelminthiques utilisables contre l'ascaridose et | t      |
| l'ankylostomose                                                 | 242    |
| Tableau 81: Anthelminthiques utilisables contre l'ascaridose,   |        |
| l'ankylostomose et la trichurose                                | 242    |
| Tableau 82 : Anthelminthiques utilisables contre le téniasis    | 243    |
| Tableau 83: Associations d'anthelminthiques contre les némat    | odes   |
| et les cestodes                                                 | 244    |
| Tableau 84 : Anthelminthiques disponibles en Tunisie            | 244    |
| Tableau 85 : Calendrier pratique de vermifugation des chiens e  | en     |
| Tunisie                                                         | 245    |
| Tableau 86: Mesures sanitaires à appliquer pour lutter contre l | les    |
| endoparasites du chien                                          | 248    |
|                                                                 |        |

## Liste des figures

| Figure 1 : Carte topograhique de la Tunisie                        | 22     |
|--------------------------------------------------------------------|--------|
| Figure 2 : Chronologie des périodes prépatente et patente          | 28     |
| Figure 3 : Cycle biologique des tiques monophasiques               | 82     |
| Figure 4 : Cycle biologique des tiques diphasiques                 | 82     |
| Figure 5 : Cycle biologique des tiques triphasiques                | 83     |
| Figure 6 : Lampe de Wood                                           | 115    |
| Figure 7 : Choix du lieu de prélèvement pour la recherche          |        |
| d'ectoparasites                                                    | 119    |
| Figure 8 : Méthode de lecture d'une lame                           | 122    |
| Figure 9 : Dispositif de la technique de McKenna                   | 140    |
| Figure 10 : Eléments de diagnose différentielle entre les larves 1 | des    |
| strongles respiratoires des petits ruminants                       | 142    |
| Figure 11 : Étalement de sang bien conçu                           | 156    |
| Figure 12 : Dynamique des formes parasitaires des strongles dige   | estifs |
| des petits ruminants sur les pâtures en Tunisie                    | 225    |
| Figure 13: Programme des traitements anthelminthiques des          |        |
| chiennes en reproduction                                           | 239    |
| Figure 14: Programme des traitements anthelminthiques des ch       | iots   |
|                                                                    | 239    |
| Figure 15: Rythme d'application des acaricides en fonction de      |        |
| l'objectif du programme de lutte                                   | 253    |

#### Liste des abréviations

A: Acarien

BAT: Batracien

 $\mathrm{BV}:\mathrm{Bovin}$ 

C : Cestode CN : Chien

CNV : Carnivore

CT : Chat CV : Équidé

F/: Famille

HBV : Herbivore HD : Hôte définitif

HI: Hôte intermédiaire

 ${
m HO}:{
m Homme}$ 

I : Insecte

J : Jour LP : Lapin

MAM : Mammifère

N : Nématode ONG : Ongulé P : Protozoaire

PA: Pararthorpode

PC: Porc

p.p. : Période prépatente PRN : Petit ruminant

PO: per os

Pdt.: Pendant

RT: Rat

REP: Reptile RG: Rongeur RN: Ruminant SC: Sous-cutané OIS: Oiseau

OV : Ovin

T : Trématode VO : Volaille

## **Généralités**

### Contexte général des parasitoses en Tunisie

L'étude des parasitoses animales, d'un point de vue épidémiologique, clinique mais aussi la lutte nécessite une fine connaissance du contexte général dans lequel évoluent les animaux, les stades exogènes des parasites et les vecteurs.

La Tunisie est un territoire très hétérogène avec un gradient d'aridité croissant qui suit un axe nord-sud et à un degré moindre un axe ouest-est. Il va d'un climat humide au nord-ouest vers un climat saharien au sud du pays. Une grande partie de la Tunisie (environ 40%) est occupée par le Sahara.

Cette hétérogénéité abiotique génère une hétérogénéité épidémiologique et nosologique retrouvées dans plusieurs types de maladies animales, parmi lesquelles les parasitoses vectorielles et non vectorielles.

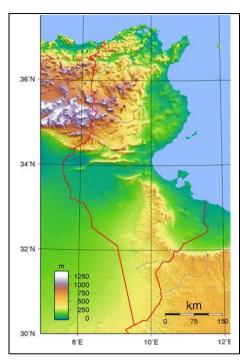



Figure 1 : Carte topograhique de la Tunisie (Wikipedia)

La petitesse de la superficie de la Tunisie, notamment, la partie habitée, en conjonction avec la présence d'axes routiers carrossables fait que des animaux vivant à l'extrême sud de la Tunisie peuvent, après quelques heures de voyage, se retrouver à l'extrême nord et vice versa. Cette caractéristique à deux implications pour le vétérinaire praticien :

- (i) Il doit à chaque fois se renseigner sur l'origine des animaux, chose parfois difficile si les animaux ont subi une série de transactions commerciales (pratique courante en Tunisie). Il doit également penser à des pathologies habituellement absentes dans la région dans laquelle il exerce.
- (ii) Le deuxième élément non moins important à citer est ce que nous qualifions de « brassage épidémiologique », néologisme pour dire que les spécificités régionales sont parfois perdues avec la création de foyers ectopiques. Par exemple, la présence de dromadaires dans les hôtels de la côte nord et centre-est de la Tunisie était à l'origine de l'installation de foyers de surra¹ (infection par *Trypanosoma² evansi*). De même, l'organisation de manifestations équestres dans plusieurs régions de la Tunisie a conduit à la contamination de quelques chevaux par *T. evansi* à partir de chevaux venant du sud du pays.

La Tunisie est un pays qui a une superficie de 163 610 km², il possède une frontière commune avec l'Algérie à l'ouest et la Libye au sud-est. La côte méditerranéenne fait 1 298 km de long.

La Tunisie compte 965 km de frontières communes avec l'Algérie à l'ouest. Cette frontière se caractérise au nord par un relief accidenté et forestier, au centre par un relief fortement accidenté et au sud par un relief plat, aride à saharien. Le sud-

23

<sup>&#</sup>x27; **Surra** (nom masculin) : mot d'origine marathe qui désigne le son émis par le nez lors d'une respiration profonde.

<sup>&</sup>lt;sup>2</sup> *Trypanosoma*: du grec, *trypano*- (foreuse) et *soma* (corps) du fait de leurs mouvements en tire-bouchon.

est de la Tunisie (région du Jaffar) possède 459 km de frontières avec la Libve, c'est une région aride à saharienne. Il ressort de cette description des frontières qu'il est difficile de contrôler les mouvements des Hommes et des animaux. Les déplacements humains concernent d'abord les traversées régulières des frontières (qui ne jouent pas un rôle important dans la transmission des maladies animales), ensuite le commerce illégal d'animaux qui est très grave mais difficilement quantifiable. Enfin, certaines tribus du sud se déplacent de manière continue et librement sur de très grands espaces entre la Tunisie, l'Algérie et la Libve, voire, d'autres d'Afrique subsaharienne. Ces déplacements ancestraux et tolérés par les trois pays du fait de leur rôle sociopolitique très important. Le flux d'animaux peut être classé en quatre catégories: les animaux de rente (mouvements contrôlés et non contrôlés), les animaux domestiques errants (chiens), les mammifères sauvages (comportant une grande population de chacals et de sangliers) et les oiseaux (notamment migrateurs). Tous ces effectifs échappent aux contrôles vétérinaires et doivent être pris en considération dans la lutte contre les maladies animales notamment les maladies à grand pouvoir de diffusion (grippe aviaire, rage, fièvre aphteuse...) mais aussi plusieurs autres maladies enzootiques parmi lesquelles les parasitoses. C'est le cas par exemple de

On comprend alors que la lutte contre certaines parasitoses ne peut être efficace que si elle est réalisée à l'échelle régionale. Les pays du Maghreb doivent établir un programme de lutte commun ou au moins harmonieux. Les régions frontalières

l'échinococcose hydatique, les hôtes définitifs (chiens et canidés sauvages) traversent les frontières sans aucun contrôle.

doivent comporter des zones tampon dans lesquelles des parasites risquent d'être introduits depuis les pays limitrophes.

En conclusion, des facteurs aussi diversifiés que le climat, la topographie et la géopolitique peuvent avoir un impact insoupçonnable sur la santé animale. De ce fait, l'approche écopathologique doit être adoptée aussi bien pour le diagnostic que dans la lutte contre les parasitoses.

### Concepts de base en parasitologie

#### Hôte paraténique<sup>3</sup>

C'est un hôte qui concentre, protège et disperse le parasite. L'hôte paraténique n'est pas indispensable au développement du parasite. C'est par exemple le cas des vers de terres qui sont des hôtes paraténiques d'*Histomonas meleagridis*.

#### Infection

L'infection est la multiplication d'un pathogène chez l'hôte, c'est le cas de toutes les infections bactériennes, virales, mycosiques et à protozoaires.

#### Infestation

L'infestation est la présence, sans multiplication, du parasite chez l'hôte ou à proximité de celui-ci. C'est le cas de la majorité des infestations par les acariens et des helminthes et les infestations par les insectes.

#### **Parasite**

Un parasite<sup>4</sup> est un être vivant qui vit au dépens d'un autre (l'hôte) et lui provoque des nuisances sans le tuer<sup>5</sup>.

<sup>&</sup>lt;sup>a</sup> **Paraténique :** du grec, *para* (préfixe qui signifie à côté de, le long de) et *teínô* (tendre, déployer, tendre avec effort, concerner, se rapprocher de).

#### Parasitose à caractère infectieux

C'est le cas des phtirioses, les poux se reproduisent sur l'hôte.

#### Période d'incubation

C'est le délai entre l'infestation (ou l'infection) et l'apparition des symptômes.

#### Période prépatente

C'est le temps entre l'infestation (ou l'infection) par un parasite et l'apparition des œufs, larves ou ookystes dans le milieu extérieur (ou dans le sang lors de parasitose à transmission vectorielle). C'est à dire l'apparition de formes infestantes (infectantes).

La connaissance de la période prépatente est importante à deux titres :

- *Diagnostic parasitologique :* pendant la période prépatente, les tests parasitologiques directs sont généralement négatifs.
- Lutte contre les parasites : par exemple, pour lutter contre les helminthoses digestives du chien, il faut traiter l'animal avec une périodicité égale à la période prépatente.

<sup>&</sup>lt;sup>4</sup> Parasite : du grec, para, « à côté » et sitos, « nourriture ».

<sup>&</sup>lt;sup>5</sup> Si le deuxième être vivant est tué, il s'agit alors d'une relation de prédation (ralation prédateur – proie).

#### Période patente<sup>6</sup>

C'est la période pendant laquelle les parasites peuvent être mis en évidence (excrétion de formes parasitaires, présence de parasites dans le sang...).

Il n'existe pas de relation entre ces deux périodes (période prépatente et période patente) et la durée d'incubation. C'est-à-dire qu'un animal peut être dans la période prépatente et exprimer le tableau clinique de la parasitose (c'est le cas par exemple de certaines coccidioses des volailles).

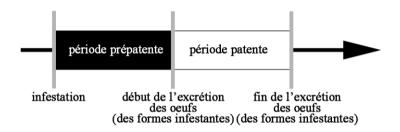



Figure 2 : Chronologie des périodes prépatente et patente

#### Sensibilité

La sensibilité d'une technique<sup>7</sup> est sa capacité à identifier des sujets malades<sup>8</sup> (infestés, infectés, séropositifs...) comme étant

<sup>&</sup>lt;sup>6</sup> Patent : qui est évident, manifeste, connu de tous (Dictionnaire Larousse).

<sup>&</sup>lt;sup>7</sup> **Test, technique :** ces termes sont utilisés en épidémiologie au sens large, il peut s'agir d'un examen clinique, radiologique, de laboratoire...

<sup>\*</sup> Malade: le mot malade est utilisé en épidémiologie au sens large, pour désigner un animal infecté, infesté, séropositif, ayant de l'ADN du pathogène, donnant un examen radiologique anormal...

malades. Un test est peu sensible s'il donne plusieurs faux négatifs.

#### Spécificité

La spécificité est la capacité d'un test à identifier les sujets non malades comme étant non malades. Un test est peu spécifique s'il donne plusieurs faux positifs.

La sensibilité et la spécificité ont des valeurs inversement proportionnelles.

#### Transmission par co-feeding

Transmission d'un pathogène d'une tique à une autre lors d'un co-feeding.

#### Transmission trans-ovarienne

Transmission d'un pathogène d'un vecteur femelle à sa descendance.

#### Transmission trans-stadiale

Transmission d'un pathogène d'un stade au suivant chez un vecteur.

<sup>&</sup>lt;sup>9</sup> *Co-feeding*: le fait que deux tiques se fixent presque dans le même endroit sur un hôte et effectuent leurs repas sanguins durant la même période.

# Parasites des animaux domestiques









Pour un déparasitage :

**PRÉCIS** 

FACILITÉ

RAISONNÉ

CONCENTRÉ DE

Injectez la juste dose : pas de sur ou sous dosage Produit fluide et concentré, faible volume injecté 1ml/100kg Lutte contre les phénomènes de résistance aux antiparasitaires

Flacon ergonomique et résistant aux chocs

Possibilité de cibler les animaux



#### Parasites des carnivores

La liste des parasites des animaux domestiques est très longue, nous avons mentionné les principales espèces par espèce animale hôte et par leurs localisations (endoparasites et ectoparasites).

Tableau 1 : Principaux ectoparasites des carnivores

| Groupe            | Parasite                        | Importance |
|-------------------|---------------------------------|------------|
| Tiques            | Rhipicephalus sanguineus (A)    | +++        |
|                   | Occasionnellement d'autres      | Variable   |
|                   | espèces de tiques :             |            |
|                   | Ixodes ricinus (A), Dermacentor |            |
|                   | spp. (A)                        |            |
| Puces             | Ctenocephalides canis (I)       | +++        |
|                   | Ctenocephalides felis (I)       | +++        |
|                   | Echidnophaga spp. (I)           | +          |
|                   | Felicola subrostratus (I) (CT)  | +          |
|                   | Linognathus setosus (I)         | +          |
| Poux et faux poux | Trichodectes canis (I)          | +          |
|                   | Cheyletiella blakei (A) (CT)    | +          |
|                   | Cheyletiella yasguri (A) (CN)   | +          |

| Groupe          | Parasite                              | Importance |
|-----------------|---------------------------------------|------------|
|                 | Demodex canis <sup>10</sup> (A)       | +++        |
| Conduit auditif | Demodex cati (A)                      | ++         |
| externe         | Demodex gatoi (A)                     | ++         |
| externe         | Demodex injai (A)                     | +++        |
|                 | Otodectes cynotis (A)                 | +++        |
|                 | Notoedres cati (A)                    | +          |
|                 | Sarcoptes scabiei (A)                 | +          |
| Peau            | Acanthocheilonema reconditum          | +          |
| reau            | (N)                                   |            |
|                 | Dirofilaria repens (N)                | +          |
|                 | Straelensia cynotis (larve d'acarien) | 5          |

CN: chien, CT: chat

Tableau 2 : Endoparasites des carnivores

| Localisation        | Parasite                            | Importance |
|---------------------|-------------------------------------|------------|
| Nez et rhinopharynx | Linguatula serrata (PA)             | +          |
|                     | Pneumonyssoides caninum             | Inconnue   |
|                     | Oestrus ovis                        | -          |
| Œil                 | Thelazia callipaeda                 | +          |
|                     | Oslerus osleri, chien (N)           | ++         |
| Poumons             | Aelurostrongylus abstrusus, chat    | ++         |
|                     | (N)                                 |            |
| Æsophage et estomac | Spirocerca lupi (N)                 | ++         |
|                     | Cestodes                            |            |
|                     | Dipylidium caninum (HD)             | +++        |
|                     | Echinococcus granulosus (HD)        | +++        |
| Intestin grêle      | Mesocestoides lineatus (HD)         | +++        |
|                     | Mesocestoides litteratus (HD)       | +++        |
|                     | Taenia hydatigina (HD)              | ++         |
|                     | Taenia multiceps <sup>11</sup> (HD) | ++         |

-

<sup>&</sup>lt;sup>10</sup> *Demodex* spp. provoquent au niveau du conduit auditif du chien et du chat une otite appelée otodémodécie. Ils peuvent se multiplier au niveau des espaces interdigités du chien provoquant ainsi une pododémodécie.

| Localisation                       | Parasite                          | Importance |
|------------------------------------|-----------------------------------|------------|
|                                    | Taenia ovis (HD)                  | ++         |
|                                    | Taenia pisiformis (HD)            | ++         |
|                                    | Taenia serialis (HD)              | ++         |
|                                    | Taenia taeniaformis (HD)          | ++         |
|                                    | Nématodes                         |            |
|                                    | Ancylostoma caninum <sup>12</sup> | +++        |
|                                    | Strongyloides stercoralis         | ++         |
|                                    | Toxascaris leonina                | +++        |
|                                    | Toxocara canis                    | +++        |
|                                    | Toxocara cati                     | +++        |
|                                    | Uncinaria stenocephala            | +++        |
|                                    | Protozoaires                      |            |
|                                    | Giardia intestinalis              | ++         |
|                                    | Hammondia hammondi                | +          |
|                                    | Isospora spp.                     | +          |
|                                    | Sarcocystis spp.                  | +          |
| Caecum et colon                    | Trichuris vulpis (N)              | +          |
| Vessie                             | Capillaria plica (N)              | +          |
| Artères pulmonaires et             | Angiostrongylus vasorum (N)       | +++        |
| cœur droit                         | Dirofilaria immitis (N)           | +++        |
|                                    | Babesia vogeli (P)                | +++        |
| Sang                               | Trypanosoma evansi (P)            | ++         |
| Saug                               | Dirofilaria immitis (N)           | +++        |
|                                    | Dirofilaria repens (N)            | 0          |
| Cavité générale                    | Mesocestoides lineatus (C)        | ++         |
| Muscles                            | Toxoplasma gondii (P)             | +++        |
| Système des phagocytes mononucléés | Leishmania infantum (P)           | +++        |

A : Acarien, I : Insecte, N : Nématode, PA : Pararthorpode, P : Protozoaire, HD : hôte définitif

Les parasites zoonotiques ont été indiqués en gras

" *Taenia milticeps* a été rebaptisé *Multiceps multiceps*. Dans ce qui suit, nous allons garder l'ancienne dénomination qui est la plus connue par les médecins vétérinaires.

<sup>&</sup>lt;sup>12</sup> Ancylostoma s'écrivait avant comme suit Ankylostoma.

Tableau 3 : Le chien hôte définitif de plusieurs espèces de tænia

| Parasite                      | Hôte intermédiaire                         |
|-------------------------------|--------------------------------------------|
| Dipylidium caninum (CN,       | Puces (rarement, poux)                     |
| CT)                           |                                            |
| Echinococcus granulosus (CN)  | Omnivores et herbivores                    |
| Mesocestoides lineatus (CN,   | HI 1: oribates                             |
| CT)                           | HI 2: petits mammifères, oiseaux, reptiles |
| Mesocestoides litteratus (CN, | HI 1 : coléoptères coprophages             |
| CT)                           | HI 2: oiseaux                              |
| Taenia hydatigina (CN)        | Ruminants                                  |
| Taenia multiceps (CN)         | Ovins                                      |
|                               | Rarement : bovins, équidés, Homme          |
| Taenia ovis (CN)              | Ovins                                      |
| Taenia pisiformis (CN)        | Léporidés                                  |
| Taenia serialis (CN)          | Léporidés                                  |
| Taenia taeniaeformis (CT)     | Rongeurs                                   |

CN: chien, CT: chat

Tableau 4 : Caractéristiques générales des principaux parasites des carnivores domestiques

| Espèce                              | Hôte définitif | p.p.<br>(semaines) | Hôte<br>intermédiaire<br>(habitat)                                                |
|-------------------------------------|----------------|--------------------|-----------------------------------------------------------------------------------|
| Cestodes                            |                |                    |                                                                                   |
| Echinococcus<br>granulosus          | Chien, renards | 6-9                | Ruminants,<br>porc, Homme<br>(tous les<br>organses<br>surtout foie et<br>poumons) |
| Taenia<br>hydatigena                | Chien          | 11-12              | Ruminants<br>(omentum)                                                            |
| Taenia multiceps<br>(syn. Multiceps | Chien, renards | 6                  | Ovins, Homme<br>(cerveau,                                                         |

| Espèce                       | Hôte définitif         | p.p.<br>(semaines) | Hôte<br>intermédiaire<br>(habitat) |
|------------------------------|------------------------|--------------------|------------------------------------|
| multiceps)                   |                        |                    | moelle                             |
| _                            |                        |                    | épinière)                          |
| Taenia ovis                  | Chien, renards         | 6-7                | Ovins                              |
|                              |                        |                    | (muscles)                          |
| Taenia                       | Chien, chat            | 6                  | Rongeurs                           |
| pisiformis                   |                        |                    | (omentum)                          |
| Taenia                       | Chat                   | 7                  | Rats, souris                       |
| taeniaeformis                |                        |                    | (divers organes)                   |
| Nématodes                    |                        |                    |                                    |
| Ancylostoma                  | Chien, Homme           | 2,5-4              | -                                  |
| caninum                      | (intestins)            |                    |                                    |
| Angiostrongylus              | Chiens (artères        | 5                  | Limaces                            |
| vasorum                      | pulmonaires, cœur      |                    |                                    |
|                              | droit)                 |                    |                                    |
| Dipetalonema                 | Homme, chien           | 36                 | Culicoides spp.                    |
| perstans                     | (cavité générale)      |                    |                                    |
| Dirofilaria                  | Chien, chat, Homme     | 25                 | Culex spp.,                        |
| immitis                      | (cœur droit, artères   |                    | Anopheles spp.                     |
|                              | pulmonaires)           |                    |                                    |
| Strongyloides                | Ruminants (intestins)  | 1,5                |                                    |
| papillosus                   |                        |                    |                                    |
| Toxocara canis <sup>13</sup> | Chien (intestin grêle) | 4                  | Souris                             |
| Toxocara cati                | Chat (intestin grêle)  | 8                  | Souris                             |
| Trichinella                  | Carnivores, Homme      | 1                  | -                                  |
| spiralis                     | (intestins)            |                    |                                    |
| Trichuris vulpis             | Chien, chat (colon)    | 6-7                | -                                  |

<sup>&</sup>lt;sup>13</sup> **Toxocara**: du grec, *toxon* (arc, trembler) et du latin *caro* (chair).

### Parasites des bovins

Tableau 5: Principaux ectoparasites des bovins

| Groupe          | Parasite                                                       |
|-----------------|----------------------------------------------------------------|
| _               | Hyalomma" scupense                                             |
|                 | Hyalomma dromedarii                                            |
|                 | Hyalomma excavatum                                             |
|                 | Hyalomma marginatum                                            |
| Tiques          | Ixodes ricinus                                                 |
|                 | Rhipicephalus annulatus (syn. Boophilus annulatus)             |
|                 | Rhipicephalus bursa                                            |
|                 | Plusieurs espèces de tiques peuvent infester les bovins, tels  |
|                 | que <i>H. impeltatum, R. sanguineus</i>                        |
| Puces           | Chez le veau : <i>Ctenocephalides canis</i> et <i>C. felis</i> |
|                 | Bovicola bovis                                                 |
| Poux            | Haemontapinus eurysternus                                      |
| Foux            | Linognathus vituli                                             |
|                 | Solenopotes capillatus                                         |
| A mames do      | Chorioptes bovis                                               |
| Agents de gales | Psoroptes ovis                                                 |
| gaies           | Sarcoptes scabiei                                              |
|                 | Hypoderma bovis                                                |
| Peau            | Hypoderma lineatum                                             |
|                 | Myiases cutanées                                               |

<sup>&</sup>lt;sup>14</sup> *Hyalomma*: du grec, hyalos (ὕαλος) cristal, verre et *omma* (ομμα) oeil.

Tableau 6: Principaux endoparasites des bovins

| Localisation         | Parasite                             | Importance |
|----------------------|--------------------------------------|------------|
| Tractus respiratoire | Dictyocaulus viviparus <sup>15</sup> | 0          |
| (Facebone            | Hypoderma lineatum (I)               | +++        |
| Œsophage             | Gongylonema spp. (N)                 | 0          |
| Rumen et réseau      | Paramphistomum spp. 16 (T)           | +          |
| Caillette            | Haemonchus spp. (N)                  | +++        |
| Camene               | Trichostrongylus axei (N)            | ++         |
|                      | Cestodes                             |            |
|                      | Moniezia (HD)                        | ++         |
|                      | Nématodes                            |            |
|                      | Bunostonium phlebotonium             | ++         |
|                      | Cooperia spp.                        | ++         |
|                      | Nematodirus spp.                     | ++         |
|                      | Strongyloides papillosus             | ++         |
| Intestin grêle       | Toxocara vitulorum                   | ++         |
| intesum greie        | Trichostrongylus colubriformis       | ++         |
|                      | Trématodes                           |            |
|                      | Adolescaria de <i>Paramphistomum</i> | ++         |
|                      | spp.                                 |            |
|                      | Protozoaires                         |            |
|                      | Eimeria spp.                         | +++        |
|                      | Cryptosporidium spp.                 | +++        |
|                      | Giardia spp.                         | +          |
|                      | Chabertia ovina (N)                  | +          |
| Caecum et colon      | Oesophagostomum spp. (N)             | +          |
|                      | Trichuris spp. (N)                   | +          |
| Foie                 | Echinococcus granulosus (C)          | +++        |
| TOIC                 | Fasciola hepatica (T)                | +++        |

-

<sup>15</sup> Ce parasite n'a jamais été rapporté officiellement en Tunisie.

<sup>&</sup>lt;sup>16</sup> La taxonomie de ce groupe de parasites se base sur la morphologie des ventouses. La classification est très complexe et plusieurs espèces seraient des synonymes. Ce groupe de parasites (douves du rumen) comporte plusieurs genres: *Paramphistomum, Calicophoron, Cotylophoron, Bothriophoron.* 

| Localisation             | Parasite                               | Importance |
|--------------------------|----------------------------------------|------------|
|                          | Larve de Taenia hydatigena (C)         | +          |
|                          | Œufs égarés de Schistosoma bovis       | 0          |
|                          | (T)                                    |            |
| A 11 7 1 1               | Neospora caninum (P)                   | ++         |
| Appareil génital femelle | Toxoplasma gondii (P)                  | +++        |
| тетене                   | Tritrichomonas fœtus <sup>17</sup> (P) | ++         |
|                          | Larve de <i>Taenia saginata</i> (C)    | ++         |
| Muscles                  | Sarcocystis spp. (P)                   | +          |
|                          | Toxoplasma gondii (P)                  | +++        |
|                          | Theileria annulata (P)                 | +++        |
|                          | Theileria buffeli (P)                  | 0          |
|                          | Babesia bigemina (P)                   | ++         |
| Sang et système des      | Babesia bovis (P)                      | ++         |
| phagocytes               | Babesia divergens (P)                  | ++         |
| mononucléés              | Babesia occultans (P)                  | 0          |
|                          | Trypanosoma evansi (P)                 | +          |
|                          | Trypanosoma theileri (P)               | 0          |
|                          | Schistosoma bovis (T)                  | 0          |
| Yeux                     | Thelazia sp. (N)                       | 0          |
| Encéphale et moelle      | Coenurus cerebralis (C)                | +          |
| épinière                 | Echinococcus granulosus (C)            | +          |
|                          | Hypoderma bovis (I)                    | +          |
|                          | Hypoderma bovis (I)                    | +++        |
| Tiany conjunctif         | Hypoderma lineatum (I)                 | +++        |
| Tissu conjonctif         | Onchocerca spp. (N)                    | 0          |
|                          | Parafilaria bovicola (N)               | 0          |
| Cavités séreuses         | Setaria spp. (N)                       | 0          |
| Divers organes           | Echinococcus granulosus (C)            | +++        |

C : Cestode, N : Nématode, T : Trématode, P : Protozoaire

-

<sup>&</sup>lt;sup>17</sup> Tritrichomonas fœtus était nommée Trichomonas fœtus.

Tableau 7: Principaux cestodes parasites des bovins

| Parasite            | Hôte intermédiaire    | Hôte définitif   |
|---------------------|-----------------------|------------------|
| Coenurus cerebralis | Ruminants, équidés,   | Chien            |
| Coentinus cereptans | Homme                 |                  |
| Echinococcus        | Herbivores, omnivores | Chien et canidés |
| granulosus          | (Homme)               | sauvages         |
| Moniezia spp.       | Oribates              | Ruminants        |
| Taenia hydatigena   | Chien                 | Ruminants        |
| Taenia saginata     | Bovins                | Homme            |

Tableau 8 : Caractéristiques générales des principaux parasites des bovins

| Espèce                                    | Hôte définitif                                                 | p.p.<br>(semaines) | Hôte intermédiaire (habitat)                                                                  | Stade chez l'hôte<br>intermédiaire (nom) |
|-------------------------------------------|----------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|
| Trématodes                                |                                                                |                    |                                                                                               |                                          |
| Fasciola hepatica                         | Ovins, <b>bovins</b> , équidés,<br>Homme (voies<br>biliaires)  | 8-13               | Galba spp.                                                                                    | Plusieurs stades                         |
| Dicrocoelium<br>dendriticum <sup>18</sup> | Ruminants, équidés,<br>porc, lapin, Homme<br>(voies biliaires) | 6-10               | HI 1 : Helicella spp., Zebrina<br>spp.<br>HI 2 : Fourmis (Formica fusca<br>et autres espèces) | Plusieurs stades                         |
| Schistosoma bovis                         | Ruminants (veine<br>mésentérique<br>intestinale)               | 6                  | Bulinus spp.                                                                                  | Plusieurs stades                         |
| Cestodes                                  |                                                                |                    |                                                                                               |                                          |
| Avitellina spp.                           | Ruminants                                                      | 4-8                | Acariens oribatidés (cavité générale)                                                         | Cysticercoide                            |

<sup>&</sup>lt;sup>18</sup> *Dicrocoelium dendriticum* a été retrouvé en Tunisie à plusieurs reprises dans des foies d'ovins importés. Sa présence chez des animaux nés en Tunisie n'a jamais été documentée. En Algérie, ce parasite a été isolé pour la première fois en 2017 dans le centre nord (Bouira, Tizi-Ouzou et Béjaia). Chougar L, Harhoura Kh., Aissi M. 2019. First isolation of *Dicrocoelium dendriticum* among cattle in some Northern Algerian slaughterhouses. *Veterinary World.* www.veterinaryworld.org/Vol.12/July-2019/17.pdf

| Espèce                     | Hôte définitif      | p.p.<br>(semaines) | Hôte intermédiaire (habitat)                | Stade chez l'hôte<br>intermédiaire (nom)                |
|----------------------------|---------------------|--------------------|---------------------------------------------|---------------------------------------------------------|
| Echinococcus<br>granulosus | Chien, renards      | 6-9                | Ruminants, Homme (foie, poumons)            | Hydatide<br>(Echinococcus<br>granulosus <sup>19</sup> ) |
| Moniezia expansa           | Ruminants           | 4-6                | Acariens oribatidés (cavité générale)       | Cysticercoide                                           |
| Stilesia spp.              | Ruminants           | 4-8                | Acariens oribatidés (cavité générale)       | Cysticercoide                                           |
| Taenia hydatigena          | Chien               | 11-12              | Ruminants (omentum)                         | Cysticerque<br>(Cysticercus<br>tenuicollis)             |
| Taenia multiceps *         | Chien, renards      | 6                  | Ovins, <b>bovins</b> , Homme<br>(encéphale) | Coenure<br>(Coenurus<br>cerebralis)                     |
| Taenia saginata            | Homme               | 10-12              | Bovins (plusieurs organes)                  | Cysticerque<br>(Cysticercus bovis)                      |
| Thysaniezia spp.           | Ruminants           | 4-8                | Oribates (cavité générale)                  | Cysticercoide                                           |
| Nématodes                  |                     |                    |                                             |                                                         |
| Bunostomum spp.            | Ruminants (intestin | 7-8                | -                                           | -                                                       |

<sup>&</sup>lt;sup>19</sup> *Echinococcus granulosus* était nommée *Echinococcus polymorphus* par allusion aux différentes formes que peuvent prendre les kystes hydatiques.

| Espèce                      | Hôte définitif          | p.p.<br>(semaines) | Hôte intermédiaire (habitat) | Stade chez l'hôte<br>intermédiaire (nom) |
|-----------------------------|-------------------------|--------------------|------------------------------|------------------------------------------|
|                             | grêle)                  |                    |                              |                                          |
| Chabertia ovina             | Ruminants (colon)       | 7                  | -                            | -                                        |
| Haemonchus<br>contortus     | Ruminants (caillette)   | 3                  | -                            | -                                        |
| Oesophagostomum<br>radiatum | Bovins (colon)          | 6                  | -                            | -                                        |
| Oesophagostomum             | Ruminants (colon)       | 6                  | -                            | -                                        |
| spp.                        |                         |                    |                              |                                          |
| Strongyloides papillosus    | Ruminants (intestins)   | 1,5                | -                            | -                                        |
| Toxocara                    | Bovins (intestin grêle) | 3                  | -                            | -                                        |
| vitulorum                   |                         |                    |                              |                                          |
| Trichostrongylus            | Ruminants, équidés      | 3                  | -                            | -                                        |
| spp. (T. axei, T.           | (estomac)               |                    |                              |                                          |
| colubriformis)              |                         |                    |                              |                                          |
| Trichuris ovis              | Ruminants (caecum)      | 12                 | -                            | -                                        |

Tableau 9 : Caractéristiques générales des espèces de coccidies des bovins

| Espèce           | Dimensions des ookystes en µm | Localisations chez l'hôte                                                                                                                                     | Pouvoir pathogène |
|------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| E. alabamensis   | 19 x 13                       | Intestin grêle et gros<br>intestin                                                                                                                            | Modéré            |
| E. auburnensis   | 38 x 23                       | Intestin grêle                                                                                                                                                | Faible            |
| E. bovis         | 28 x 20                       | 1 <sup>cc</sup> schizogonie dans<br>moitié postérieure de<br>l'intestin grêle<br>2 <sup>ccc</sup> schizogonie et<br>gamétogonie dans le<br>caecum et le colon | Élevé             |
| E. brasiliensis  | 37 x 27                       | Inconnue                                                                                                                                                      | Faible            |
| E. bukidnonensis | 49 x 35                       | Inconnue                                                                                                                                                      | Faible            |
| E. canadensis    | 32 x 23                       | Inconnue                                                                                                                                                      | Faible            |
| E. cylindrica    | 23 x 12                       | Inconnue                                                                                                                                                      | Faible            |
| E. ellipsoidalis | 23 x 16                       | Intestin grêle                                                                                                                                                | Faible            |
| E. pellita       | 40 x 28                       | Inconnue                                                                                                                                                      | Faible            |
| E. subspherica   | 11 x 10                       | Inconnue                                                                                                                                                      | Faible            |
| E. wyomingensis  | 40 x 28                       | Inconnue                                                                                                                                                      | Faible            |
| E. zuernii       | 18 x 16,<br>subsphériques     | 2 schizogonies dans<br>l'intestin grêle et le gros<br>intestin<br>Gamétogonie dans le<br>gros intestin et le rectum                                           | Élevé             |

#### Parasites du dromadaire

Il est important de signaler que la citation de Leese (1917): «...pour le vétérinaire les helminthoses des camélidés n'ont aucune importance...» est totalement fausse. Il fallait écrire : « ...pour le vétérinaire, tous les troubles de la santé des camélidés sont d'une grande importance et la présence d'animaux sympatriques doit être prise en compte...». En effet, les camélidés vivent dans des conditions extrêmes (aussi bien climatiques, physiologiques que physiques), ils ont de ce fait, besoin d'une bonne santé. Dakkak et Ouhelli (1987) avaient dénombré 77 espèces d'helminthes digestifs parasitant les dromadaires. Plusieurs pathogènes (notamment helminthes) proviennent d'autres espèces animales proches. telles que les ovins et les capins. Une excellente revue publiée par Sazmand et Joachim (2017) dans *Parasite*<sup>20</sup> contient une synthèse de tous les articles publiés en Iran sur les parasites du dromadaire entre 1931 et 2017.

<sup>&</sup>lt;sup>20</sup> Sazmand A. et Joachim A. 2017. Parasitic diseases of camels in Iran (1931-2017) - A literature review. *Parasite* 24, 21. DOI: 10.1051/parasite/2017024.

Tableau 10: Principaux ectoparasites du dromadaire

| Groupe               | Parasite                                | Importance |
|----------------------|-----------------------------------------|------------|
| Agents de gales      | Sarcoptes scabiei var cameli            | +++        |
|                      | Hyalomma dromedarii                     | +++        |
|                      | Hyalomma impeltatum                     | +++        |
|                      | Hyalomma spp., Rhipicephalus            | +          |
| Tiques               | (Boophilus spp.)                        |            |
| riques               | Plusieurs espèces de tiques peuvent     |            |
|                      | infester les dromadaires et ce, en      |            |
|                      | fonction de la région et des animaux    |            |
|                      | sympatriques                            |            |
|                      | Cephalopina titillator                  | +++        |
| A monto do           | Plusieurs espèces de diptères sont des  |            |
| Agents de<br>myiases | agents de myiases, observées chez les   |            |
|                      | animaux présentant des lésions          |            |
|                      | cutanées ou des diarrhées <sup>21</sup> |            |

Tableau 11: Principaux endoparasites du dromadaire

| Localisation   | Parasite                                            | Importance  |
|----------------|-----------------------------------------------------|-------------|
|                | Trypanosoma evansi                                  | +++         |
|                | Plusieurs espèces de <i>Trypanosoma</i> : <i>T.</i> | Absentes en |
| Comm           | vivax, T. congolense, T. simiae, T.                 | Tunisie     |
| Sang           | brucei, T. cameli                                   |             |
|                | Dipetalonema evansi                                 |             |
|                | Besnoitia sp.                                       |             |
| Rumen          | Paramphistomum cervi                                | 0           |
|                | Haemonchus longistipes                              | +++         |
| Caillette      | Camelostrongylus mentulatus                         | +           |
| Cameue         | Marshallagia marshalli                              | +           |
|                | Trichostrongylus axei                               | +           |
| Intestin grêle | Trichostrongylus colubriformis                      | +           |

.

 $<sup>^{21}</sup>$  Les diptères volants parasitant les dromadaires n'ont jamais été bien étudiés. Il y a une très grande variabilité régionale de la faune entomlogique parasitant le dromadaire.

| Localisation | Parasite                                  | Importance |
|--------------|-------------------------------------------|------------|
|              | Cooperia oncophara                        | +          |
|              | Nematodirella cameli                      | +          |
|              | Bunostomum trigonocephalum                | +          |
|              | Plusieurs autres espèces de parasites ont |            |
|              | une importance limitée car ils            |            |
|              | proviennent des petits ruminants,         |            |
|              | d'autres ont une distribution             |            |
|              | géographique limitée                      |            |
|              | Nematodirius spp.                         |            |
|              | Plusieurs autres espèces de strongles     |            |
|              | digestifs peuvent infester les            |            |
|              | dromadaires, notamment lorsqu'ils sont    |            |
|              | sympatriques d'espèces domestiques        |            |
|              | lourdement infestées                      |            |
|              | Besnoitia sp.                             |            |
|              | Taenia saginata                           | +          |
| Muscles      | Sarcocystis spp.                          |            |
|              | Toxoplasma gondii                         |            |

Tableau 12 : Caractéristiques générales des espèces de coccidies du dormadaire

| Espèce             | Dimensions des ookystes en µm | Localisations<br>chez l'hôte |
|--------------------|-------------------------------|------------------------------|
| Eimeria cameli     | 80-100 x 63-94                | Intestin grêle               |
|                    | Coque brune très épaisse      |                              |
| Eimeria dromederi  | 28x22                         |                              |
| Eimeria rajasthani | 36x26                         |                              |
| Eimeria pellerdyi  | 23x13                         |                              |

Tableau 13: Parasites zoonotiques des camélidés (Sazmand et al., 2019) 2

| Famille            | Genre               |
|--------------------|---------------------|
| Trypanosomatidae   | Trypanosoma         |
| Giardiidae         | Giardia             |
| Enterocytozoonidae | Enterocytozoon      |
| Balantidiidae      | Balantidium         |
| Sarcocystidae      | Toxoplasma          |
| Cryptosporidiidae  | Cryptosporidium     |
| Blastocystidae     | <b>Blastocystis</b> |
| Fasciolidae        | Fasciola            |
| Schistosomatidae   | Schistosoma         |
| Taeniidae          | Echinococcus        |
| Trichinellidae     | Trichinella         |
| Sarcoptidae        | Sarcoptes           |
| Linguatulidae      | Linguatula          |

<sup>&</sup>lt;sup>22</sup> Sazmand A., Joachim A., Otranto D. 2019. Zoonotic parasites of dromedary camels: so important, so ignored. *Parasites and Vectors*. 12:610. DOI: https://doi.org/10.1186/s13071-019-3863-3

## Parasites des petits ruminants

Tableau 14: Principaux ectoparasites des petits ruminants

| Groupe          | Parasite                                  | Importance |
|-----------------|-------------------------------------------|------------|
| Poux            | Bovicola ovis (I)                         | ++         |
| roux            | Linognathus pedalis (I)                   | ++         |
|                 | Chorioptes bovis (A)                      | +          |
| Agents de gales | Psoroptes ovis (A)                        | +++        |
|                 | Sarcoptes scabiei (A)                     | +++        |
| Mélophages      | Melophagus ovinus (I)                     | +          |
| Peau            | Plusieurs insectes peuvent parasiter les  | Variable   |
|                 | petits ruminants, certaines larves        |            |
|                 | d'insectes peuvent être à l'origine de    |            |
|                 | myiases cutanées, génitales ou anales     |            |
|                 | Les myiases sont relativement             |            |
|                 | fréquentes chez les ovins                 |            |
|                 | Rhipicephalus sanguineus et               | ++         |
|                 | Rhipicephalus turanicus <sup>23</sup> (A) |            |
| Tiques          | Boophilus (Rhipicephalus) annulatus       | +          |
|                 | (A)                                       |            |
|                 | Hyalomma marginatum (A)                   | +          |

-

<sup>&</sup>lt;sup>20</sup> La taxonomie des tiques apparatenant au goupe *R. sanguineus* est encore controversée (Nava et al., 2015). Nava S., Estrada-Peña A., Petney T., Beati L., Labruna M.B., Szabó M.P., Venzal J.M., Mastropaolo M., Mangold A.J., Guglielmone A.A. 2015. The taxonomic status of *Rhipicephalus sanguineus* (Latreille, 1806). *Veterinary Parasitology*. 208(1-2):2-8. DOI: 10.1016/j.vetpar.2014.12.021.

| Groupe | Parasite                                                                                                                   | Importance |
|--------|----------------------------------------------------------------------------------------------------------------------------|------------|
|        | Ixodes ricinus (A)                                                                                                         | +          |
|        | Rhipicephalus bursa (A)                                                                                                    | +          |
|        | Plusieurs espèces de tiques peuvent occasionnellement parasiter les petits ruminants, tels que <i>Hyalomma</i> spp.        | Variable   |
| Puces  | Occasionnellement chez les agneaux et les chevreaux : <i>Ctenocephalides canis</i> (I) et <i>Ctenocephalides felis</i> (I) | +++        |

A: acarien, I: insecte

Tableau 15: Principaux endoparasites des petits ruminants

| Localisation         | Parasite                      | Importance |
|----------------------|-------------------------------|------------|
|                      | Dictyocaulus filaria (N)      | +++        |
|                      | Cystocaulus ocreatus (N)      | +          |
| Tractus respiratoire | Muellerius capillaris (N)     |            |
|                      | Neostrongylus linearis (N)    |            |
|                      | Protostrongylus rufescens (N) |            |
| Œsophage             | Gongylonema spp. (N)          | 0          |
| Rumen                | Paramphistomum spp. (T)       | 0          |
|                      | Haemonchus spp. (N)           | +++        |
|                      | Marshallagia marshalli (N)    | +          |
|                      | Ostertagia lyrata (N)         | +          |
|                      | Ostertagia ostertagii (N)     | +          |
| Caillette            | Ostertagia occidentalis (N)   | +          |
| Camene               | Teladorsagia circumcincta     | +          |
|                      | (Ostertagia circumcincta) (N) |            |
|                      | Teladorsagia trifurcata (N)   | +          |
|                      | Trichostrongylus axei (N)     | ++         |
|                      | Trichostrongylus vitrinus (N) | +          |
|                      | Cestodes                      |            |
|                      | Moniezia spp. (HD)            | ++         |
| Intestin grêle       | Nématodes                     |            |
|                      | Bunostomum phlebotomum        | ++         |
|                      | Cooperia spp.                 | ++         |

| Localisation        | Parasite                              | Importance |
|---------------------|---------------------------------------|------------|
|                     | Nematodirus spp.24                    | ++         |
|                     | Strongyloides papillosus              | ++         |
|                     | Trichostrongylus spp.                 | ++         |
|                     | Trématodes                            |            |
|                     | Paramphistomum spp.                   | +          |
|                     | Protozoaires                          |            |
|                     | Eimeria spp. (plusieurs espèces à     | ++         |
| Intestin grêle      | pouvoirs pathogènes variables)        |            |
|                     | Cryptosporidium spp.                  | +++        |
|                     | Giardia spp.                          | ++         |
|                     | Chabertia ovina (N)                   | +          |
| Caecum et colon     | Oesophagostomum spp. (N)              | +          |
|                     | Trichuris spp. (N)                    | +          |
|                     | Dicrocoelium dendriticum (T)          | +++        |
| Foie                | Fasciola hepatica (T)                 | +++        |
|                     | Larve de <i>Taenia hydatigena</i> (C) | +          |
| Appareil génital    | Toxoplasma gondii (P)                 | +++        |
| femelle             | Neospora caninum (P)                  | +          |
|                     | Larve de <i>Taenia ovis</i> (C)       | ++         |
| Muscles             | Sarcocystis spp. (P)                  | +          |
|                     | Toxoplasma gondii (P)                 | +++        |
| Cavités nasales et  | Oestrus ovis (I)                      | +++        |
| sinus frontaux      |                                       |            |
| Sang et système des | Babesia ovis (P)                      | +          |
| phagocytes          | Theileria ovis (P)                    | 0          |
| mononucléés         | Trypanosoma melophagium (P)           | 0          |
| Encéphale           | Coenurus cerebralis (C)               | ++         |
| Divers organes      | Echinococcus granulosus (C)           | +++        |

 $<sup>^{\</sup>mbox{\tiny 24}}$  Nematodirus battus serait absente en Tunisie car l'éclosion des larves nécessite une gelée.

Tableau 16: Principaux cestodes parasites des ovins

| Parasite                  | Hôte intermédiaire    | Hôte définitif      |
|---------------------------|-----------------------|---------------------|
| Coenurus cerebralis       | Ruminants, équidés,   | Chien               |
|                           | Homme                 |                     |
| Echinococcus              | Herbivores, omnivores | Chien et canidés    |
| granulosus                |                       | sauvages            |
| Moniezia expansa          | Oribates              | Petits ruminants 25 |
| Moniezia benedeni         |                       |                     |
| Stilesia globipunctata    |                       |                     |
| Thysaniezia ovilla        |                       |                     |
| Avitellina centripunctata |                       |                     |
| Taenia hydatigina         | Ruminants             | Chien               |
| Taenia ovis               | Chien                 | Petits ruminants    |

Tableau 17 : Caractéristiques générales des principaux endoparasites des petits ruminants

| Espèce                     | Hôte définitif | p.p.<br>(semaines) | Hôte intermédiaire (habitat)             |
|----------------------------|----------------|--------------------|------------------------------------------|
| Cestodes                   |                |                    |                                          |
| Echinococcus<br>granulosus | Chien, renards | 6-9                | Herbivores et omnivores (dont l'Homme)   |
| Taenia ovis                | Chien, renards | 6-7                | Ovins (muscles)                          |
| Taenia multiceps           | Chien, renards | 6                  | Ovins, Homme<br>(cerveau)                |
| Moniezia expansa           | Ruminants      | 4-6                | Acariens oribatidés<br>(cavité générale) |
| Thysaniezia spp.           | Ruminants      | 4-8                | Acariens oribatidés<br>(cavité générale) |
| Stilesia sp.               | Ruminants      | 4-8                | Acariens oribatidés                      |

<sup>&</sup>lt;sup>23</sup> Akkari H., Gharbi M., Darghouth M.A. 2012. Dynamics of infestation of tracers lambs by gastrointestinal helminths under a traditional management system in the North of Tunisia. *Parasite*. 19(4):407-15.

DOI: 10.1051/parasite/2012194407

| Espèce            | Hôte définitif | p.p.<br>(semaines) | Hôte intermédiaire<br>(habitat) |
|-------------------|----------------|--------------------|---------------------------------|
|                   |                | (SCHIAIIICS)       | (cavité générale)               |
| Avitellina spp.   | Ruminants      | 4-8                | Acariens oribatidés             |
|                   |                |                    | (cavité générale)               |
| Nématodes         | 1              | I.                 |                                 |
| Bunostomum spp.   | Ruminants      | 7-8                | -                               |
| Chabertia ovina   | Ruminants      | 7                  | -                               |
| Haemonchus        | Ruminants      | 3                  | =                               |
| contortus         |                |                    |                                 |
| Oesophagostomum   | Ruminants      | 6                  | =                               |
| spp.              |                |                    |                                 |
| Protostrongylus   | Petits         | 4-5                | Escargots                       |
| spp.              | ruminants      |                    |                                 |
| Strongyloides     | Ruminants      | 1,5                | -                               |
| papillosus        |                |                    |                                 |
| Trichostrongylus  | Ruminants,     | 3                  | -                               |
| spp. (T. axei, T. | équidés        |                    |                                 |
| colubriformis)    |                |                    |                                 |
| Trichuris ovis    | Ruminants      | 12                 | <del>-</del>                    |
| Trématodes        |                |                    |                                 |
| Dicrocoelium      | Ruminants,     | 6-10               | Helicella spp.,                 |
| dendriticum       | chevaux, porc, |                    | Zebrina spp.                    |
|                   | lapin, Homme   |                    |                                 |
| Fasciola hepatica | Ovins, bovins, | 8-13               | <i>Galba</i> spp. <sup>∞</sup>  |
|                   | équidés,       | semaines           |                                 |
|                   | Homme          |                    |                                 |

-

Ea lymnée tronquée *Galba truncatula* était nommée *Lymnaea truncatula*. A côté de cette espèce, *Bulinus truncatus* est également un hôte intermédaire de *Fasciola hepatica* en Tunisie (Hamed et al., 2009). Hamed N, Hammami H, Khaled S, Rondelaud D, Ayadi A. 2009. Natural infection of *Fasciola hepatica* (Trematoda: Fasciolidae) in *Bulinus truncatus* (Gastropoda: Planorbidae) in northern Tunisia. *Journal of Helminthology*. 83(3):271-3. DOI: 10.1017/S0022149X08207947.

Tableau 18 : Caractéristiques générales des espèces de coccidies des ovins

| Espèce                     | Dimensions des<br>ookystes en µm | Localisations chez l'hôte                                            | Pouvoir<br>pathogène |
|----------------------------|----------------------------------|----------------------------------------------------------------------|----------------------|
| E. ahsata                  | 33 x 23                          | Intestin grêle                                                       | Faible               |
| E. bakuensis<br>(E. ovina) | 29 x 19                          | Intestin grêle                                                       | Faible               |
| E. crandallis              | 22 x 19                          | Schizogonie dans l'iléon<br>Gamétogonie dans<br>l'iléon et le caecum | Élevé                |
| E. faurei                  | 32 x 23                          | Intestin grêle et gros<br>intestin                                   | Faible               |
| E. granulosa               | 29 x 21                          | Inconnu                                                              | Faible               |
| E. intricata               | 48 x 34                          | Intestin grêle et gros<br>intestin                                   | Faible               |
| E. marsica                 | 19 x 13                          | Inconnu                                                              | Faible               |
| E. ovinoidalis             | 24 x 20                          | Schizogonie dans l'iléon<br>Gamétogonie dans le<br>caecum            | Modéré               |
| E. pallida                 | 14 x 10                          | Inconnu                                                              | Faible               |
| E. parva                   | 17 x 14                          | Intestin grêle et gros<br>intestin                                   | Faible               |
| E. weybridgensis           | 24 x 17                          | Intestin grêle                                                       | Faible               |

Tableau 19 : Caractéristiques générales des espèces de coccidies des caprins

| Espèce                  | Dimensions<br>des ookystes<br>en µm | Localisations chez<br>l'hôte                                                                           | Pouvoir<br>pathogène |
|-------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| E. alijevi              | 17 x 15                             | Intestin grêle et gros<br>intestin                                                                     | Faible               |
| E. aspheronica          | 31 x 23                             | Inconnue                                                                                               | Faible               |
| E. arloingi             | 28 x 19                             | Intestin grêle et gros<br>intestin                                                                     | Élevé                |
| E. caprina              | 34 x 23                             | Intestin grêle et gros<br>intestin                                                                     | Modéré               |
| E. caprovina            | 30 x 24                             | Inconnue                                                                                               | Faible               |
| E. christenseni         | 38 x 25                             | Intestin grêle                                                                                         | Élevé                |
| E. hirci                | 21 x 16                             | Inconnue                                                                                               | Modéré               |
| E. jolchijevi           | 31 x 22                             | Inconnue                                                                                               | Faible               |
| E.<br>ninakohlyakimovae | 21 x 15                             | Schizogonie dans<br>l'intestin grêle<br>Gamétogonie dans<br>l'iléon, le caecum et<br>le début du colon | Modéré               |

# Parasites des équidés

#### Ectoparasites des équidés

Tableau 20 : Principaux ectoparasites des équidés

| Groupe          | Parasite                                  | Importance |
|-----------------|-------------------------------------------|------------|
| D               | Bovicola equi (I)                         | +          |
| Poux            | Haematopinus asini (I)                    | +          |
|                 | Chorioptes bovis (A)                      | +          |
| Agents de gales | Psoroptes equi (A)                        | ++         |
|                 | Sarcoptes scabiei (A)                     | ++         |
|                 | Plusieurs insectes peuvent parasiter      | Variable   |
|                 | les équidés. Ils sont à l'origine de      |            |
| Peau            | nuisances et peuvent induire une          |            |
|                 | réaction d'hypersensibilité, surtout      |            |
|                 | Culicoides spp. et Stomoxys spp.          |            |
|                 | Hyalomma scupense (A)                     | ++         |
|                 | Hyalomma marginatum (A)                   | ++         |
| Tiques          | Plusieurs espèces de tiques peuvent       |            |
|                 | occasionnellement parasiter les           | Variable   |
|                 | équidés, tels que <i>Dermacentor</i> spp. |            |
|                 | Rhipicephalus bursa (A)                   | ++         |

A : acarien, I : insecte

#### Endoparasites des équidés

Tableau 21: Principaux endoparasites des équidés

| Localisation                                     | Parasite                                  | Importance |
|--------------------------------------------------|-------------------------------------------|------------|
| Tractus respiratoire                             | Dictyocaulus arnfieldi (N)                | ++         |
|                                                  | Draschia megastoma (N)                    | ++         |
| E-4                                              | Habronema spp. (N)                        | ++         |
| Estomac                                          | Larves de Gasterophilus spp. (I)          | +++        |
|                                                  | Trichostrongylus axei (N)                 | +          |
|                                                  | Cestodes                                  |            |
|                                                  | Anoplocephala magna (HD)                  | +          |
|                                                  | Paranoplocephala mammilana (HD)           | ++         |
|                                                  | Nématodes                                 |            |
| Intestin grêle                                   | Parascaris equorum                        | +++        |
|                                                  | Strongyloides westeri                     | ++         |
|                                                  | Protozoaires                              |            |
|                                                  | Eimeria sp.                               | +          |
|                                                  | Giardia intestinalis                      | +          |
|                                                  | Anoplocepha perfoliata (C)                | +          |
|                                                  | Petits strongles (N)                      | +          |
| Caecum et colon                                  | Strongylus vulgaris (N)                   | +++        |
|                                                  | Strongylus edentatus (N)                  | ++         |
|                                                  | Strongylus equinus (N)                    | ++         |
| Gros intestin                                    | Oxyuris equi (N)                          |            |
| Foie                                             | Fasciola hepatica (T)                     | +          |
| role                                             | Larves de <i>Stronglyus edentatus</i> (N) | ++         |
| Yeux                                             | Thelazia spp. (N)                         | +          |
| Ligament nucal                                   | Onchocerca cervicalis (N)                 | 0          |
| Sang at collular de                              | Babesia caballi (P)                       | +++        |
| Sang et cellules du<br>système des<br>phagocytes | Trypanosoma evansi (P)                    | +++        |
|                                                  | Strongylus vulgaris (N), artère           | +++        |
| mononucléés                                      | mésentérique craniale                     |            |
|                                                  | Theileria equi (P)                        | +++        |
| Encéphale et                                     | Coenurus cerebralis (C)                   | 0          |
| moelle épinière                                  |                                           |            |

| Localisation    | Parasite                         | Importance |
|-----------------|----------------------------------|------------|
| Divers organes  | Larves d'Echinococcus granulosus | +          |
| 21.015 01902105 | (C)                              |            |

C : cestode, I : insecte, N : némaotde, P : protozoaire, T : trématode

Tableau 22 : Principaux cestodes parasites des équidés

| Parasite                   | Hôte intermédiaire          | Hôte définitif                  |
|----------------------------|-----------------------------|---------------------------------|
| Anoplocephala              | Oribates                    | Équidés                         |
| spp.                       |                             |                                 |
| Coenurus<br>cerebralis     | Ruminants, équidés et Homme | Chien                           |
| Echinococcus<br>granulosus | Herbivores et omnivores     | Chien et<br>canidés<br>sauvages |

Tableau 23 : Caractéristiques générales des principaux parasites des équidés

| Espèces                     | Hôte définitif                                                             | p.p.<br>(semaines) | Hôte<br>intermédiaire<br>(habitat)                     |
|-----------------------------|----------------------------------------------------------------------------|--------------------|--------------------------------------------------------|
| Trématodes                  |                                                                            |                    |                                                        |
| Fasciola hepatica           | Ovin, bovin,<br><b>équidés</b> , Homme<br>(voies biliaires)                | 8-13<br>semaines   | Galba spp.                                             |
| Dicrocoelium<br>dentriticum | Ruminants, <b>équidés</b> ,<br>porcs, lapin,<br>Homme (voies<br>biliaires) | 6-10               | Helicella spp.,<br>Zebrina spp.                        |
| Cestodes                    |                                                                            |                    |                                                        |
| Echinococcus<br>granulosus  | Chien, renards                                                             | 6-9                | Ruminants, Homme, équidés, dromadaire (foie, pounnons) |
| Taenia multiceps            | Chien, renards                                                             | 6                  | Ovins,                                                 |

| Espèces                                          | Hôte définitif                                    | p.p.<br>(semaines) | Hôte<br>intermédiaire<br>(habitat)    |
|--------------------------------------------------|---------------------------------------------------|--------------------|---------------------------------------|
|                                                  | (intestin grêle)                                  |                    | Homme,<br><b>équidés</b><br>(cerveau) |
| Anoplocephala spp.                               | Équidés                                           | 4-6                | Oribatidés<br>(cavité<br>générale)    |
| Nématodes                                        |                                                   |                    |                                       |
| Cyathostomum<br>coronatum <sup>27</sup>          | Équidés (colon)                                   | 8-20               | -                                     |
| Oxyuris equi                                     | Équidés (colon, caecum)                           | 16-20              | -                                     |
| Parascaris<br>equorum                            | <b>Équidés</b> (cecum et                          | 6-12               | -                                     |
| Strongylus<br>vulgaris                           | Équidés (cecum et colon)                          | 24                 | -                                     |
| Strongylus<br>edendatus                          | <b>Équidés</b> (cecum et colon)                   | 40-44              | -                                     |
| Strongylus<br>equinus                            | <b>Équidés</b> (cecum et colon)                   | 32-36              | -                                     |
| Trichinella<br>spiralis                          | Carnivores, <b>équidés</b> ,<br>Homme (intestins) | 1                  | -                                     |
| Trichostrongylus sp. (T. axei, T. colubriformis) | Ruminants, <b>Équidés</b><br>(estomac)            | 3                  | -                                     |

<sup>&</sup>lt;sup>27</sup> Les petits strongles est un groupe de parasites des équidés qui appartiennent à plusieurs genres : *Cylicostephanus, Cylicocyclus, Cyathostomum, Triodontophorus, Cylicodontophorus* et *Gyalocephalus.* 

Tableau 24 : Caractéristiques générales des espèces de coccidies des équidés

| Espèce         | Dimensions moyennes des ookystes en µm                        | Localisations<br>chez l'hôte | Pouvoir<br>pathogène |
|----------------|---------------------------------------------------------------|------------------------------|----------------------|
| E. leuckarti   | 75-88 x 50-59<br>Coque brun sombre très<br>épaisse, micropyle | Intestin grêle               | Modéré               |
| E. solipedum   | 22x10                                                         |                              |                      |
| E. uniungulata | 20x15                                                         |                              |                      |

# Parasites du lapin

#### Ectoparasites du lapin

Tableau 25: Principaux ectoparasites du lapin

| Localisation    | Parasite                               | Importance  |
|-----------------|----------------------------------------|-------------|
| Pelage          | Listrophorus gibbus <sup>28</sup> (A)  | 0           |
|                 | Sarcoptes scabiei var cuniculi (A)     | +++         |
|                 | Notoedres cati var cuniculi (A)        | ++          |
|                 | Cheyletiella parasitovorax (A)         | +++         |
|                 | Demodex folliculorum var cuniculi (A)  | +           |
|                 | Plusieurs espèces de tiques : Hyalomma | Faible sauf |
|                 | spp., Ixodes spp., Haemaphysalis spp., | exceptions  |
| Peau            | Rhipicephalus spp., Dermacentor spp    |             |
| 1 cau           | Echidnophaga gallinacea (I)            | ++          |
|                 | Spilopsyllus cuniculi (I)              | ++          |
|                 | Ctenocephalides felis (I),             | +           |
|                 | Ctenocephalides canis (I)              |             |
|                 | Pulex irritans (I)                     | +           |
|                 | Haemodipus ventricosus (I)             | +           |
|                 | Pulex irritans (I)                     | +           |
| Conduit auditif | Psoroptes cuniculi (A)                 | +++         |

\_

<sup>&</sup>lt;sup>28</sup> Listrophorus gibbus (gibbus en latin veut dire bosse) est l'ancien nom de Leporacarus gibbus.

#### Endoparasites du lapin

Tableau 26: Principaux endoparasites du lapin

| Localisation         | Parasite                             | Importance |
|----------------------|--------------------------------------|------------|
| Œsophage et estomac  | Graphidium strigosum (N)             | 0          |
|                      | Trichostrongylus axei                | +          |
|                      | Cittotaenia ctenoides, C. denticula, | 0          |
|                      | C. pectinata (C)                     |            |
| Intestin småle       | Eimeria intestinalis (P)             | +++        |
| Intestin grêle       | Eimeria magna (P)                    | +++        |
|                      | Giardia duodenalis (P)               | ++         |
|                      | Trichostrongylus retortaeformis (N)  | 0          |
| Foie                 | Eimeria stiedae (P)                  | +++        |
|                      | Eimeria flavescens (P)               | +++        |
| Caecum               | Passalurus ambiguus (N) (caecum et   | 0          |
|                      | colon)                               |            |
| Cavité abdominale    | Taenia pisiformis (C)                | +          |
|                      | Multiceps serialis (syn. Taenia      | +          |
| Tissu sous-cutané et | serialis) (C)                        |            |
| muscles              | Sarcocystis spp.                     | 0          |
|                      | Besnoitia oryctofelisi <sup>9</sup>  | +++        |
| Système nerveux      | Encephalitozoon cuniculi (P)         | +          |
| central              |                                      |            |

<sup>&</sup>lt;sup>29</sup> Besnoitia oryctofelisi a été rapportée en Argentine.

Tableau 27: Caractéristiques générales des espèces de coccidies du lapin

| Espèce       | Dimensions des ookystes   | Localisations  | Pouvoir   |
|--------------|---------------------------|----------------|-----------|
|              | en µm                     | chez l'hôte    | pathogène |
|              | 28-40 x 16-25             | Epithélium des | Élevé     |
| E. stiedai   | Micropyle, reliquats      | canaux         |           |
|              | sporocystaux              | biliaires      |           |
| E.           | 27-32 x 17-20             | Intestin grêle | Modéré    |
| intestinalis |                           |                |           |
| E.           | 28-32 x 20-22             | Caecum -       | Modéré    |
| flavescens   |                           | colon          |           |
|              | 27-41 x 17-29             | Intestin grêle | Faible    |
| E. magna     | Gros micropyle, reliquats |                |           |
|              | ookystal et sporocystaux  |                |           |

# Parasites des nouveaux animaux de compagnie

De plus en plus, le vétérinaire est appelé à soigner des micromammifères dans le cadre de consultations en tant que nouveaux animaux de compagnie (NAC) ou dans des animaleries des laboratoires de diagnostic et de recherche.

**Tableau 28 : Principaux ectoparasites des petits mammifères** (Girardet, 2010)

| Acariens |                                                                |
|----------|----------------------------------------------------------------|
| Furet    | Otodectes cynotis, Sarcoptes scabiei, Demodex sp.,             |
|          | Trombicula autumnalis, Ixodes ricinus                          |
|          | Cheyletiella parasitovorax, Psoroptes cuniculi, Leporacarus    |
| Lapin    | gibbus, Trombicula autumnalis, Ixodes ricinus                  |
|          | Occasionnels : Sarcoptes scabiei var. cuniculi, Demodex sp.,   |
|          | Notoedres cati var. cuniculi                                   |
| Rongeurs | Notoedres muris, Demodex sp., Sarcoptes scabiei,               |
|          | (Trombicula autumnalis, Ixodes ricinus)                        |
|          | <u>Trixacarus caviæ</u> , <u>Chirodiscoides caviæ</u> (cobaye) |
|          | <u>Myocoptes musculinus</u> (cobaye, souris)                   |
|          | Psorergates simplex (cobaye)                                   |
| Insectes |                                                                |
| Furet    | Ctenocephalides felis, Ctenocephalides canis, Cuterebra sp.    |
| Lapin    | Ctenocephalides felis, Ctenocephalides canis, Spilopsyllus     |
|          | cuniculi sp., Cuterebra sp., Hæmodipus ventricosus             |

| n        | Ctenocephalides felis, Ctenocephalides canis<br>Gliricolla porcelli, Giropus ovalis, Trimenopon hipsidum               |
|----------|------------------------------------------------------------------------------------------------------------------------|
| Rongeurs | (cobaye)  Nosopsyllus fasciatus, Xenopsylla cheopis (rat, souris)  Polyplax spinulosa (rat), Polyplax serrata (souris) |

En souligné : portage sain fréquent

Tableau 29 : Principaux endoparasites des petits mammifères (Girardet, 2010)

| Nématodes    |                                                                      |
|--------------|----------------------------------------------------------------------|
| Furet        | Toxascaris leonina, Toxocara cati, Ancylostoma spp. (en              |
|              | commun avec les autres carnivores domestiques)                       |
|              | Uncinaria criniformis, Molineus spp.                                 |
|              | Dirofilaria immitis                                                  |
|              | Plus rarement : Capillaria spp.                                      |
|              | <u>Passalurus ambiguus</u> , Trichostrongylus retortaeformis,        |
| Lapin        | Graphidium strigosum                                                 |
| Lapin        | Occasionnels: Obeliscoides cuniculi, Strongyloides spp.,             |
|              | Trichuris leporis, Capillaria hepatica                               |
|              | Capillaria hepatica, Trichostrongylus sp.                            |
|              | Paraspidodera uncinata (cobaye), Syphacia obvelata                   |
| Rongeurs     | (hamster et souris), <u>Syphacia muris</u> (rat), <u>Aspiculurus</u> |
|              | <u>tetraptera</u> (souris), <i>Trichuris muris</i> (rat et souris)   |
|              | Dentostomella translucida (gerbille)                                 |
| Cestodes     |                                                                      |
| Furet        | Tænia spp., Dipylidium caninum                                       |
| Ti           | Cysticercus pisiformis, Tænia serialis, Mosgovoyia spp.,             |
| Lapin        | Echinococcus granulosus, Cittotænia denticulata                      |
| D            | Hymenolepis nana, Hymenolepis diminuta, Hymenolepis                  |
| Rongeurs     | microstoma, Echinococcus granulosus                                  |
| Trématodes   |                                                                      |
| Lapin        | Fasciola hepatica, Dicrocœlium dendriticum                           |
|              | Hasstilesia tricolor (considéré comme non pathogène)                 |
| Protozoaires |                                                                      |
| Furet        | Isospora sp., Eimeria sp., Giardia duodenalis,                       |
| ruret        | Cryptosporidium parvum                                               |

| Lapin    | Eimeria spp., Encephalitozoon cuniculi, Giardia           |
|----------|-----------------------------------------------------------|
|          | duodenalis, Cryptosporidium sp., Toxoplasma gondii        |
|          | Giardia sp., Toxoplasma gondii                            |
|          | Entamœba caviæ, <u>Giardia caviæ</u> , Balantidium caviæ, |
|          | Eimeria caviæ (cobaye)                                    |
|          | Giardia intestinalis (chinchilla, hamster), Giardia muris |
| Rongeurs | (rat, souris, cobaye)                                     |
|          | Trichomonas minuta, Trichomonas criceti (hamster)         |
|          | Trichomonas muris (rat et souris)                         |
|          | Entamœba muris, Giardia muris, Hexamita muris             |
|          | (hamster, rat et souris)                                  |

En souligné : portage sain fréquent

#### Parasites des volailles

#### Ectoparasites des volailles

Tableau 30: Principaux acariens ectoparasites des volailles

| Faux poux                   |                  |               |  |  |
|-----------------------------|------------------|---------------|--|--|
| Dermanyssus gallinae (A)    | Volailles        | Tout le corps |  |  |
| Ornithonyssus sylviarum (A) | Oiseaux sauvages | Tout le corps |  |  |
| Tiques molles               | Tiques molles    |               |  |  |
| Argas reflexus (A)          | Pigeon           | Peau          |  |  |
| Argas persicus (A)          | Poulet           | Peau          |  |  |

Tableau 31: Principaux agents de gales des volailles

| Parasites                  | Hôtes                              | Localisation   |
|----------------------------|------------------------------------|----------------|
| Cnemidocoptes mutans (A)   | Poulet, dindon,<br>faisan, perdrix | Pattes         |
| Cnemidocoptes laevis (A)   | Plusieurs oiseaux <sup>30</sup>    | Corps          |
| Cnemidocoptes mutans (A)   | Perruche                           | Tête et pattes |
| Epidermoptes bilobatus (A) | Poulet, pigeon                     | Tête           |
| Rivoltasia bifurcata (A)   | Poulet, pigeon                     | Tête           |

**Columbiformes :** pigeons, tourterelles, phasianelles, tourtelettes, colombines, géopélies, colombes, Nicobar à camail, gallicolombes, trugon, microgoura...

Psittacidés: perroquets, perruches, palettes, inséparables, touïs... Fringillidés: serins, chardonnerets, linotte, verdier, gros-bec...

68

<sup>&</sup>lt;sup>30</sup> Galliformes: dindes, poules, pintades, cailles et faisans

Le nombre d'espèces de poux de volailles est très élevé. Tous les oiseaux ont leurs poux mais peuvent également être infestés par des poux d'autres espèces d'oiseaux.

Tableau 32: Principaux poux boryeurs des volailles

| Parasites                | Hôtes                    | Localisation       |
|--------------------------|--------------------------|--------------------|
| Lipeurus caponis         | Poulet                   | Ailes              |
| Eomenacanthus stramineus | Dinde, poulet            | Corps              |
| Manahan gallinga         | Poulet, canard, dinde,   | Plumes (cuisse et  |
| Menopon gallinae         | pigeon                   | bréchet)           |
| Menopon leucoxanthum     | Canard                   | Plumes             |
| Menacanthus layali       | Oiseaux d'ornementation  | Peau, corps        |
|                          | Poulet, dinde, canard,   | Peau               |
| Menacanthus stramineus   | faisan, pintade, caille, |                    |
|                          | canaris, paon            |                    |
| Goniodes gigas           | Poulet, pintage, faisan  | Peau et plumes     |
| Goniocotes gallinae      | Poulet                   | Plumes             |
| Goniodes dispar          | Oiseaux d'ornementation  | Peau et plumes     |
| Goniodes pavonis         | Paon                     | Peau et plumes     |
| Goniodes meleagridis     | Dinde                    | Peau et plumes     |
| Goniodes colchici        | Oiseaux d'ornementation  | Peau et plumes     |
| Cuclotogaster            | Poulet, autres espèces   | Tête               |
| heterographus            |                          |                    |
| Columbicola columbae     | Pigeon                   | Peau, ailes, tête, |
| Columbicola columbae     |                          | cou                |
| Menopon leucoxanthum *   | Canard                   | Plumes             |
| Ciconiphilus spp.        | Canard                   | Peau               |
| Trinoton spp.            | Canard                   | Peau               |
| Goniocotes gallinae      | Volailles                | Plumes             |
| Goniocotes chryocephalus | Oiseaux d'ornementation  | Plumes             |
| Goniocotes obscurus      | Oiseaux d'ornementation  | Plumes             |
| Goniocotes microthorax   | Oiseaux d'ornementation  | Plumes             |

<sup>\*</sup> Syn. Holomenopon leucoxanthum

Tableau 33: Autres insectes ectoparasites des volailles

| Punaises                | Punaises                                   |               |  |  |
|-------------------------|--------------------------------------------|---------------|--|--|
| Cimex spp. (A)          | Poulet et autres espèces<br>d'oiseaux      | Tout le corps |  |  |
| Puces                   |                                            |               |  |  |
| Ceratophyllus gallinae  | Poulet et oiseaux sauvages                 | Peau          |  |  |
| Ceratophyllus columbae  | Pigeon                                     | Peau          |  |  |
| Ceratophyllus niger     | Poulet, chien, chat, rat,<br>Homme         | Peau          |  |  |
| Echidnophaga gallinacea | Poulet, chat, chien, lapin, équidés, Homme | Peau          |  |  |

Tableau 34: Principaux parasites du tube digestif des volailles

| Espèce                                              | Hôte définitif                                                       | Hôte<br>intermédiaire | Localisation                                              |
|-----------------------------------------------------|----------------------------------------------------------------------|-----------------------|-----------------------------------------------------------|
| Ascaridia galli (N)                                 | Poulet, dinde,<br>oie, canard,<br>pintade et autres<br>galliformes   | -                     | Intestin grêle                                            |
| Cytodites nudus (A)                                 | Colombiformes                                                        |                       | Sacs aériens et<br>bronches                               |
| Dispharynx nasuta<br>(syn. Acuaria<br>spiralis) (N) | Poulet, dinde,<br>pigeon, oie,<br>pintade, faisan,<br>autres espèces | Cloportes             | Œsophage,<br>proventricule                                |
| Histomonas<br>meleagridis * (P)                     | Dinde, faisan,<br>perdrix, poulet                                    | -                     | Caecum, foie                                              |
| Hypopes<br>d'hypodectidés (A)                       | Poulet                                                               | Cycle inconnu         | Tissu conjonctif<br>(non<br>pathogène)                    |
| Laminosioptes<br>cysticola (A)                      | Poulet<br>(dindon, faisans,<br>oies, pigeons)                        | Cycle inconnu         | Tissu conjonctif<br>sous-cutané,<br>poumons,<br>péritoine |
| Spironucleus<br>meleagridis                         | Dinde, canard, faisan, caille,                                       | -                     | Intestin grêle,<br>coecum                                 |

| Espèce                          | Hôte définitif                                        | Hôte<br>intermédiaire                                       | Localisation                |
|---------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------------------------|
| (Hexamita<br>meleagridis) (P)   | perdrix                                               |                                                             |                             |
| Sternostoma<br>tracheacolum (A) | Canaris,<br>perruches et<br>autres oiseaux            |                                                             | Trachée                     |
| Syngamus trachea (N)            | Poulet, dindon,<br>faisan, perdrix,<br>pintade, pigon |                                                             | Trachée et poumons          |
| Tetrameres spp. (N)             | Poulet et autres<br>volailles                         | En fonction de<br>l'espèce :<br>blattes, autres<br>insectes | Glandes du<br>proventricule |

A : Acarien, N : Nématode, P : Protozoaire

Tableau 35 : Caractéristiques générales des principaux parasites digestifs des volailles

| Espèce          | Hôte<br>définitif | p.p.<br>(semaines) | Hôte<br>intermédiaire<br>(habitat) | Stade chez<br>l'hôte<br>intermédiaire |
|-----------------|-------------------|--------------------|------------------------------------|---------------------------------------|
| Amoebotaenia    | Poulet            | 3-4                | Insectes (cavité                   | Cysticercoide                         |
| spp. (C)        |                   |                    | générale)                          |                                       |
| Choanotaenia    | Poulet et         | 3                  | Insectes (cavité                   | Cysticercoide                         |
| spp. (C)        | dinde             |                    | générale)                          |                                       |
| Davainea        | Poulet            | 2                  | Escargots                          | Cysticercoide                         |
| proglottina (C) |                   |                    | (tissus)                           |                                       |
| Raillietina     | Poulet            | 6                  | Insectes (cavité                   | Cysticercoide                         |
| tetragona (C)   |                   |                    | générale)                          |                                       |
| Heterakis       | Poulets           | 3-5                |                                    |                                       |
| gallinarum (N)  |                   |                    | =                                  | -                                     |

C : Cestode, N : Nématode

 $<sup>^{\</sup>ast}$  Heterakis gallinarum : protège le parasite, les lombrics sont des hôtes paraténiques.

Tableau 36 : Caractéristiques générales des espèces de coccidies du poulet

| Espèce        | Dimensions moyennes des ookystes en micromètre | Localisations chez l'hôte                                                                     | Pouvoir pathogène | Stade<br>pathogène           |
|---------------|------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|------------------------------|
| E. tenella    | 14-31 x 9-25                                   | Caecum                                                                                        | Élevé             | Schizontes                   |
| E. necatrix   | 23-24 x 17-23                                  | Schizogonie dans l'intestin grêle<br>Gamétogonie dans le caecum                               | Élevé             | Schizontes                   |
| E. brunetti   | 14-34 x 12-26                                  | 1 cm schizogonie dans l'intestin<br>grêle<br>2 cm schizogonie et gamétogonie<br>dans les cæca | Élevé             | Schizontes II<br>et gamontes |
| E. maxima     | 21-42 x 12-26                                  | Intestin grêle                                                                                | Modéré            | Gamontes                     |
| E. acervulina | 12-23 x 9-17                                   | Premier tiers de l'intestin grêle                                                             | Élevé             | Gamontes                     |
| E. praecox    | 21 x 17                                        | Duodénum                                                                                      | Faible *          | -                            |
| E. mitis      | 16 x 15                                        | Iléum                                                                                         | Faible *          | -                            |

<sup>\*</sup> Généralement non pathogène mais peut causer une réduction du gain moyen quotidien, du poids et prédispose à d'autres maladies.

Tableau 37 : Caractéristiques générales des espèces de coccidies des autres volailles d'élevage

| Espèce           | Dimensions moyennes des ookystes en µm | Localisations chez l'hôte               | Pouvoir<br>pathogène |
|------------------|----------------------------------------|-----------------------------------------|----------------------|
| Dindon           |                                        |                                         |                      |
| E. adenoides     | 25 x 16                                | Intestin grêle et gros intestin         | Élevé                |
| E. dispersa      | 26 x 21                                | Partie antérieure de l'intestin grêle   | Modéré               |
| E. meleagridis   | 24 x 18                                | Caecum                                  | Modéré               |
| E. meleagrimitis | 19 x 16                                | Partie antérieure de l'intestin grêle   | Élevé                |
| E. gallopavonis  | 26 x 21                                | Intestin grêle et gros intestin         | Modéré               |
| E. innocua       | 22 x 21                                | Intestin grêle                          | Faible               |
| E. subrotunda    | 22 x 20                                | Intestin grêle                          | Faible               |
| Oie              |                                        |                                         |                      |
| E. anseris       | 20-24 x 16-19                          | Intestin grêle                          | +                    |
| L. anseris       | Tronqué, micropyle                     |                                         |                      |
| E. truncata      | 14-27 x 12-22                          | Reins (épithélium des tubes urinifères) | +                    |
| E. ITUIICAIA     | Tronqué, micropyle, calotte polaire    |                                         |                      |
| Pigeon           |                                        |                                         |                      |
| E. labbeana      | 13-24 x 12-23                          | Intestin grêle                          | ++                   |
| E. IADDEAHA      | Coque avec plaques semi-circulaire     |                                         |                      |
| E. columbarum    | 19-21 x 17-20                          | Intestin grêle                          | +                    |
| E. COMINDATUM    | Coque lisse                            |                                         |                      |

# Parasites du genre Eimeria infectant les animaux domestiques

Tableau 38 : Tableau synthétique des espèces d'*Eimeria* spp. affectant les animaux domestiques

| Espèce         | Taille des ookystes (µm) | Site de<br>l'infection                      | Pouvoir<br>pathogène |
|----------------|--------------------------|---------------------------------------------|----------------------|
| Poulet         |                          |                                             |                      |
| E. acervulina  | 18 x 14                  | Partie antérieure<br>de l'intestin grêle    | Élevé                |
| E. brunetti    | 26 x 22                  | Intestin grêle et<br>gros intestin          | Élevé                |
| E. maxima      | 30 x 20                  | Partie médiane<br>de l'intestin grêle       | Modéré               |
| E. mitis       | 16 x 15                  | Intestin grêle et<br>gros intestin          | Faible               |
| E. necatrix    | 20 x 17                  | Intestin grêle et<br>caecum                 | Élevé                |
| E. praecox     | 21 x 17                  | Intestin grêle                              | Faible               |
| E. tenella     | 23 x 19                  | Caecum                                      | Élevé                |
| Dindon         |                          |                                             |                      |
| E. adenoides   | 25 x 16                  | Intestin grêle et<br>gros intestin          | Élevé                |
| E. dispersa    | 26 x 21                  | Partie antérieure<br>de l'intestin<br>grêle | Modéré               |
| E. meleagridis | 24 x 18                  | Caecum                                      | Modéré               |

| Familia            | Taille des ookystes | Site de           | Pouvoir   |
|--------------------|---------------------|-------------------|-----------|
| Espèce             | (μm)                | l'infection       | pathogène |
|                    |                     | Partie antérieure |           |
| E. meleagrimitis   | 19 x 16             | de l'intestin     | Élevé     |
|                    |                     | grêle             |           |
| E. gallopavonis    | 26 x 21             | Intestin grêle et | Modéré    |
|                    | 20 X 21             | gros intestin     |           |
| E. innocua         | 22 x 21             | Intestin grêle    | Faible    |
| E. subrotunda      | 22 x 20             | Intestin grêle    | Faible    |
| Dromadaire         |                     |                   |           |
| Eimeria cameli     | 80-100 x 63-94      | Intestin grêle    |           |
| Eimeria dromederi  | 28x22               |                   |           |
| Eimeria rajasthani | 36x26               |                   |           |
| Eimeria pellerdyi  | 23x13               |                   |           |
| Bovins             |                     |                   |           |
| E. alabamensis     | 19 x 13             | Intestin grêle et | Modéré    |
| E. alapamensis     | 19 X 13             | gros intestin     | Modere    |
| E. auburnensis     | 38 x 23             | Intestin grêle    | Faible    |
| E. bovis           | 28 x 20             | Intestin grêle et | Élevé     |
| ·                  |                     | gros intestin     |           |
| E. brasiliensis    | 37 x 27             | Inconnu           | Faible    |
| E. bukidnonensis   | 49 x 35             | Inconnu           | Faible    |
| E. canadensis      | 32 x 23             | Inconnu           | Faible    |
| E. cylindrica      | 23 x 12             | Inconnu           | Faible    |
| E. ellipsoidalis   | 23 x 16             | Intestin grêle    | Faible    |
| E. pellita         | 40 x 28             | Inconnu           | Faible    |
| E. subspherica     | 11 x 10             | Inconnu           | Faible    |
| E. wyomingensis    | 40 x 28             | Inconnu           | Faible    |
| E. zuernii         | 18 x 16             | Intestin grêle et | Élevé     |
| E. Zuerini         | 10 X 10             | gros intestin     | Lieve     |
| Ovins              |                     |                   |           |
| E. ahsata          | 33 x 23             | Intestin grêle    | Faible    |
| E. bakuensis       | 29 x 19             | Intestin grêle    | Faible    |
| E. crandallis      | 22 x 19             | Intestin grêle et | Élevé     |
| E. CIAIIQAIIIS     | 22 A 13             | gros intestin     | FIEVE     |
| E. faurei          | 32 x 23             | Intestin grêle et | Faible    |
| E. Iduici          | 02 X Z0             | gros intestin     | 1 aibic   |

| Espèce            | Taille des ookystes | Site de           | Pouvoir   |
|-------------------|---------------------|-------------------|-----------|
| Espece            | (µm)                | l'infection       | pathogène |
| E. granulosa      | 29 x 21             | Inconnu           | Faible    |
| E. intricata      | 48 x 34             | Intestin grêle et | Faible    |
|                   |                     | gros intestin     |           |
| E. marsica        | 19 x 13             | Inconnu           | Faible    |
| E. ovinoidalis    | 24 x 20             | Intestin grêle et | Modéré    |
|                   |                     | gros intestin     |           |
| E. pallida        | 14 x 10             | Inconnu           | Faible    |
| E. parva          | 17 x 14             | Intestin grêle et | Faible    |
| 1                 |                     | gros intestin     | ,         |
| E. weybridgensis  | 24 x 17             | Intestin grêle    | Faible    |
| Caprins           | 1                   | 1                 | •         |
| E. alijevi        | 17 x 15             | Intestin grêle et | Faible    |
| · ·               |                     | gros intestin     |           |
| E. aspheronica    | 31 x 23             | Inconnu           | Faible    |
| E. arloingi       | 28 x 19             | Intestin grêle et | Élevé     |
|                   |                     | gros intestin     |           |
| E. caprina        | 34 x 23             | Intestin grêle et | Modéré    |
| *                 | 22 24               | gros intestin     | 72.71     |
| E. caprovina      | 30 x 24             | Inconnu           | Faible    |
| E. christenseni   | 38 x 25             | Intestin grêle    | Élevé     |
| E. hirci          | 21 x 16             | Inconnu           | Modéré    |
| E. jolchijevi     | 31 x 22             | Inconnu           | Faible    |
| E                 | 21 x 15             | Intestin grêle et | Modéré    |
| ninakohlyakimovae |                     | gros intestin     |           |
| Porc              | 10 14               | T                 | Tag 100   |
| E. debliecki      | 18 x 14             | Intestin grêle    | Modéré    |
| E. polita         | 26 x 18             | Intestin grêle    | Modéré    |
| E. scabra         | 32 x 22             | Intestin grêle et | Faible    |
| F'                | 01 16               | gros intestin     | F. 7.1.   |
| E. spinosa        | 21 x 16             | Intestin grêle    | Faible    |
| E. porci          | 22 x 15             | Intestin grêle    | Faible    |
| E. neodebliecki   | 21 x 16             | Inconnu           | Faible    |
| E. perminuta      | 13 x 12             | Inconnu           | Faible    |
| E. suis           | 18 x 14             | Inconnu           | Faible    |

| Fandas          | Taille des ookystes   | Site de          | Pouvoir   |
|-----------------|-----------------------|------------------|-----------|
| Espèce          | (μm)                  | l'infection      | pathogène |
| Équidés         |                       |                  |           |
|                 | 75-88 x 50-59         |                  |           |
| E. leuckarti    | Coque brun sombre     | Intestins        | Modéré    |
| L. IEUCKAIU     | très épaisse,         | Intestins        | Modere    |
|                 | micropyle             |                  |           |
| E. solipedum    | 22x10                 |                  |           |
| E. uniungulata  | 20x15                 |                  |           |
| Lapin           |                       |                  |           |
| E. stiedai      | 28-40 x 16-25         | Epithélium des   | Élevé     |
|                 | Micropyle, reliquats  | canaux biliaires |           |
|                 | sporocystaux          |                  |           |
| E. intestinalis | 27-32 x 17-20         | Intestin grêle   | Modéré    |
| E. flavescens   | 28-32 x 20-22         | Caecum et colon  | Modéré    |
| E. magna        | 27-41 x 17-29         | Intestin grêle   | Faible    |
|                 | Gros micropyle,       |                  |           |
|                 | reliquats ookystal et |                  |           |
|                 | sporocystaux          |                  |           |

## Cas particulier des protozoaires du genre Sarcocystis

Le genre *Sarcocystis* comporte environ 148 espèces et les auteurs en décrivent régulièrement de nouvelles. Il s'agit de parasites à cycles dihétéroxènes qui s'entretiennent entre un carnivore (ou un ominivore) et un herbivore (ou un omnivore).

Ces parasites jouent un rôle très important dans la régulation des populations animales par le biais de la relation prédateur proie. Ils contribuent à la stabilisation des écosystèmes sauvages et des parasites eux-mêmes (Seilacher et al., 2007)<sup>31</sup>.

<sup>-</sup>

<sup>&</sup>lt;sup>31</sup> Seilacher A., Reif W-E. & Wenk P. 2007. The parasite connection in ecosystems and macroevolution. *The Science of Nature* (*Naturwissenschaften*). DOI: 10.1007/s00114-006-0164-4

Tableau 39 : Tableau synthétique des espèces de *Sarcocystis* spp. affectant l'Homme et les animaux domestiques

| Hôtes<br>intermédiaires  | Hôtes définitifs | Espèces de <i>Sarcocystis</i> (anciens noms) <sup>32</sup> |
|--------------------------|------------------|------------------------------------------------------------|
|                          | Chien            | S. cruzi (S. bovicanis, S. fusiformis)                     |
|                          | Chat             | S. hirsuta (S. bovifelis)                                  |
| Bovins                   | Homme            | S. hominis (S. bovihominis)*                               |
|                          | пошше            | S. heydorni                                                |
|                          | Inconnu          | S. rommeli (S. sinensis)                                   |
|                          |                  | S. arieticanis                                             |
| Ovins                    | Chien            | S. tenella (S. ovicanis)                                   |
| Ovins                    |                  | S. mihoensis                                               |
|                          | Chat             | S. gigantea (S. ovifelis)                                  |
|                          | Chien            | S. capracanis                                              |
| Caprins                  | Chart            | S. hiricancis                                              |
|                          | Chat             | S. moulei (S. hircifelis)                                  |
|                          | China            | S. fayeri                                                  |
| Équidés                  | Chien            | S. equicanis (S. bertrami)                                 |
|                          | Opossums         | S. neurona                                                 |
| Dromadaire <sup>33</sup> | Chian            | S. cameli                                                  |
| Dromagaire               | Chien            | S. ippeni                                                  |
| Homme                    | Reptiles ?       | S. nesbitti                                                |

<sup>\*:</sup> Les espèces zoonotiques ont été indiquées en gras.

-

Les anciennes dénominations des espèces de *Sarcocystis* ne sont plus correctes car elles utilisent des noms latins d'autres êtres vivants (exemple *S. ovifelis*). Cette nomenclature est pratique car elle permet de connaître, via le nom de l'espèce de *Sarcocystis*, l'hôte définitif et l'hôte intermédiaire.

<sup>&</sup>lt;sup>88</sup> Les espèces suivantes: *Sarcocystis camelicanis*, *S. camelocanis* et *S. miescheri* sont considérées comme non valides.

### Tiques des animaux domestiques

#### Généralités sur les tiques

Les tiques sont des acariens hématophages à tous les stades, chaque stade effectue un repas sanguin et une mue qui peut avoir lieu sur l'animal ou dans l'environnement.

Les tiques sont à l'origine d'un important pouvoir pathogène direct (inflammation locale, spoliation sanguine, surinfections bactériennes...) et surtout indirect se traduisant par la transmission d'une pléthore de pathogènes.

Il est très important que le vétérinaire praticien connaisse la biologie et le rôle pathogène des principales espèces de tiques présentes en Tunisie.

La distribution des tiques des ovins est variable en fonction de la région, *Rhipicephalus sanguineus* sensu lato est dominante (99%) dans la région de Siliana, par contre *R. bursa* ne représente que 1% de la population (El Ati et al., 2018)<sup>34</sup>. A

\_

Elati K., Ayadi A.A., Khamassi Khbou M., Jdidi M., Rekik M., Gharbi M. 2018. Population dynamics of ticks infesting sheep in the arid steppes of Tunisia. *Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux*. 73 (3): 131-135. DOI: https://doi.org/10.19182/remvt.31641

Kebili (Sud de la Tunisie), *Hyalomma excavatum* est la tique dominante (84,3%) alors que *R. sanguineus* s.l. est moins fréquente (15,7%) (Rjeibi et al., 2016)<sup>35</sup>. *Hyalomma dromedarii* est dominante au centre de la Tunisie (28,9%) à côté de *R. sanguineus* sensu lato (71,1%) (Rjeibi et al., 2015)<sup>36</sup>.

#### Cycles biologiques des ixodidés

Les cycles des ixodidés sont de trois types: monophasiques, diphasiques et triphasiques. Cette classification est importante car elle conditionne l'épidémiologie des infections transmises par les tiques mais aussi dans la lutte contre les tiques et les infections qu'elles transmettent.

#### Tiques monophasiques

Ce sont les espèces de tiques les plus évoluées. Les larves, les nymphes et les adultes effectuent les trois repas sanguins sur le même animal (c'est-à-dire sur le même individu). De ce fait, les mues s'effectuent sur le même sujet et la tique ne quitte l'animal que pour pondre. C'est le cas des tiques du genre *Boophilus* (*Rhipicephalus*).

-

<sup>&</sup>lt;sup>35</sup> Rjeibi M.R., Darghouth M.A., Gharbi M. 2016. Prevalence of *Theileria* and *Babesia* species in Tunisian sheep. *Onderstepoort Journal of Veterinary Research*, 83 (1), a1040. DOI: 10.4102/ojvr.v83i1.1040

<sup>&</sup>lt;sup>36</sup> Rjeibi M.R., Darghouth M.A., Omri H., Souidi K., Rekik M., Gharbi M. 2015. First molecular isolation of *Mycoplasma ovis* from small ruminants in North Africa. *Onderstepoort Journal of Veterinary Research.* 82 (1), e1-e6. DOI: 10.4102/ojvr.v82i1.912

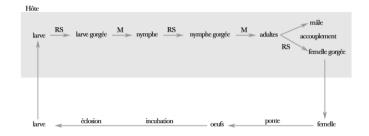



Figure 3 : Cycle biologique des tiques monophasiques

M: mue; RS: repas sanguin

#### Tiques diphasiques

Les immatures (larves et nymphes) effectuent un premier repas sur un animal, les nymphes gorgées se détachent, se laissent tomber sur le sol pour muer puis les adultes se fixent sur un deuxième hôte pour effectuer un repas sanguin. C'est le cas d'*Hyalonma scupense*.

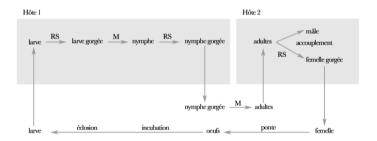



Figure 4: Cycle biologique des tiques diphasiques

 $RS: {
m repas\ sanguin}\ ;\ M: {
m mue}$ 

#### Tiques triphasiques

Ce sont les espèces de tiques les moins évoluées. Les trois stades se fixent sur trois animaux, les repas sanguins sont suivis d'un détachement des tiques. C'est le cas d'*Ixodes* spp.

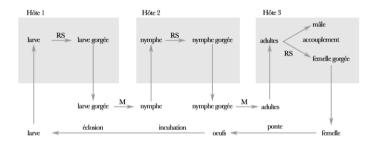



Figure 5 : Cycle biologique des tiques triphasiques RS : repas sanguin ; M : mue

Tableau 40 : Principales caractéristiques des tiques des animaux domestiques présentes en Tunisie

| Espèce                             | Biologie                 | Hôtes<br>des larves              | Hôtes<br>des<br>nymphes         | Hôtes<br>des adultes |
|------------------------------------|--------------------------|----------------------------------|---------------------------------|----------------------|
| Hyalomma<br>excavatum              | Diphasique<br>Ditrope    | RG.                              | ON                              | G., CV.              |
| Hyalomma<br>impeltatum             | Triphasique<br>Ditrope   | RG.                              | RG.                             | HBV.                 |
| Hyalomma<br>scupense               | Diphasique<br>Monotrope  | BV. (potentiellement OV. et CV.) |                                 | BV.                  |
| Hyalomma<br>marginatum             | Diphasique<br>Ditrope    | OIS.                             | (                               | ONG.                 |
| Hyalomma                           | Triphasique<br>Monotrope | HBV.                             | HBV.                            | HBV.                 |
| dromedarii                         | Triphasique<br>Ditrope   | RG.                              | RG.                             | HBV.                 |
| Ixodes ricinus                     | Triphasique<br>Télotrope | REP., OIS.,<br>BAT., MAM.        | REP.,<br>OIS.,<br>BAT.,<br>MAM. | Grands<br>ONG.       |
| Ixodes<br>inopinatus <sup>37</sup> | Triphasique<br>Télotrope | REP., OIS.,<br>BAT., MAM.        | REP.,<br>OIS.,<br>BAT.,<br>MAM. | Grands<br>ONG.       |

-

<sup>&</sup>lt;sup>37</sup> Ixodes rinicus et Ixodes inopinatus sont sympatriques en Tunisie et auraient la même biologie.

Estrada-Peña A., Nava S, Petney T. 2014. Description of all the stages of *Ixodes inopinatus* n. sp. (Acari: Ixodidae). *Ticks and Tick-Borne Diseases*. 5(6):734-43. DOI: 10.1016/j.ttbdis.2014.05.003.

Younsi H, Fares W, Cherni S, Dachraoui K, Barhoumi W, Najjar C, Zhioua E. 2019. *Ixodes inopinatus* and *Ixodes ricinus* (Acari: Ixodidae) are sympatric ticks in North Africa. *Journal of Medical Entomology*. DOI: 10.1093/jme/tjz216.

| Espèce                                    | Biologie                  | Hôtes<br>des larves | Hôtes<br>des<br>nymphes | Hôtes<br>des adultes                          |
|-------------------------------------------|---------------------------|---------------------|-------------------------|-----------------------------------------------|
| Dermacentor<br>marginatus                 | Triphasique<br>Ditrope    | RG.                 | RG.                     | PC., PRN.,<br>CV.                             |
| Haemaphysalis<br>sulcata                  | Triphasique<br>Télotrope  | OIS., MAM.          | OIS.,<br>MAM.           | HBV.,<br>CNV.<br>(en Tunisie :<br>surtout OV) |
| Haemaphysalis<br>sulcata                  | Triphasique<br>Ditrope    | Lézards             | Lézards                 | Bétail (en<br>Tunisie :<br>surtout OV)        |
| Rhipicephalus sanguineus                  |                           |                     |                         |                                               |
| Population sauvage                        | Triphasique<br>Ditrope    | RG.                 | RG.                     | Petit bétail,<br>CN                           |
| Population domestique                     | Triphasique<br>Monotrope  | CN.                 | CN.                     | CN.                                           |
| Rhipicephalus<br>turanicus                | Triphasique<br>Ditrope    | RG.                 | RG.                     | HBV, CNV                                      |
| Rhipicephalus<br>bursa                    | Diphasique<br>Monotrope   | ONG                 | •                       | Nord                                          |
| Rhipicephalus<br>(Boophilus)<br>annulatus | Monophasique<br>Monotrope |                     | HBV.                    |                                               |

# Rôle vecteur des arthropodes

### Principaux pathogènes transmis par les tiques en Tunisie

Le nombre de pathogènes transmis par les tiques est élevé, certains sont très fréquents en Tunisie, d'autres le sont beaucoup moins.

L'importance de ces pathogènes est variable, certains n'ont presque aucune importance en pathologie et ce malgré leur fréquence.

L'importance des maladies qu'elles transmettent est fortement corrélée à la distribution géographique et à la biomasse des tiques. Par exemple, *Ixodes ricinus* qui transmet la borréliose de Lyme est une tique exclusivement rencontrée dans les régions humides (le plus souvent montagneuses) de la Tunisie (régions de Aïn Draham, Amdoun, Tabarka, Kessra, Jebal Abderrahmen et Jebal Zaghouan). De ce fait, l'incidence de la borréliose de Lyme est très faible en Tunisie.

Chez la tique, la transmission trans-stadiale (passage du pathogène d'un stade à un autre) et trans-ovarienne (passage du pathogène de la femelle aux larves) des pathogènes est un phénomène qui assure la pérennisation de l'infection et façonne l'épidémiologie des infections qu'elles transmettent.

Tableau 41 : Principaux pathogènes transmis par les tiques chez tous les mammifères

| Espèce de<br>tique    | Pathogène               | Localisation          | Transmission | Importance |
|-----------------------|-------------------------|-----------------------|--------------|------------|
| Ixodes                | Borrelia<br>burgdorferi | Nord-Ouest            | ТО           | ++         |
| ricinus               | Bartonella * spp.       | Toute la<br>Tunisie ? | ТО           | Variable   |
| Toutes les<br>espèces | Coxiella<br>burnetti    | Toute la Tunisie      | TS           | ++         |

<sup>\*</sup> Le nombre d'espèces de Bartonella est impressionnant!

Tableau 42 : Principaux pathogènes transmis par les tiques *Rhipicephalus* sanguineus chez le chien

| Pathogène            | Localisation           | Transmission     | Importance |
|----------------------|------------------------|------------------|------------|
| Babesia vogeli       | Toute la Tunisie       | TO               | +++        |
| Hepatozoon canis     |                        | TS               | +          |
|                      |                        | Par ingestion de |            |
|                      |                        | tiques           |            |
| Ehrlichia canis      | Toute la Tunisie       | TS               | +++        |
| Rickettsia conorii   | Toute la Tunisie       |                  | +++        |
| Borrelia massiliae®  | Présente <sup>39</sup> |                  | +          |
| Anaplasma platys     |                        |                  | +          |
| Dipetalonema grassii |                        | TS               | 0          |

\_

<sup>&</sup>lt;sup>88</sup> Maladie humaine.

Whrouf, F. et al. 2016. Molecular diagnosis of *Rickettsia* infection in patients from Tunisia, *Ticks and Tick-Borne Diseases*. 7 (5), 653–656. DOI: 10.1016/J.TTBDIS.2016.02.010.

Tableau 43: Principaux pathogènes transmis par les tiques chez les bovins

| Espèce de tique | Pathogène transmis            | Transmission      | Importance |
|-----------------|-------------------------------|-------------------|------------|
| Ixodes ricinus  | Babesia divergens             | TO                | +++        |
| Rhipicephalus   | Babesia bovis                 | TO, TS            | +++        |
| (Boophilus sp.) |                               |                   |            |
| Rhipicephalus   | Babesia bigemina              | TO, TS            | +++        |
| bursa           | Babesia bovis                 | TO, TS            | +++        |
| Hyalomma        | Theileria annulata            | TS                | +++        |
| scupense        | Anaplasma                     |                   | +          |
| scupense        | phagocytophilum               |                   |            |
| Hyalomma        | Babesia occultans             | TS, TO            | 0          |
| marginatum      |                               |                   |            |
| Hyalomma spp.   | Ehrlichia bovis <sup>10</sup> | TS, TO            | +          |
| Haemaphysalis   | Theileria buffeli             | TS                | 0          |
| spp.            |                               |                   |            |
| Hyalomma        | Theileria annulata            | TS                | +++        |
| dromedarii      | (en Mauritanie)               |                   |            |
|                 | Coxiella burnetii             | Contagieuse et    | +++        |
|                 |                               | transmission      |            |
|                 |                               | mécanique par des |            |
|                 |                               | diptères          |            |
| Ixodidés        | Anaplasma marginale           | + Transmission    | +++        |
| TAOGIGES        |                               | mécanique par des |            |
|                 |                               | diptères          |            |
|                 | Anaplasma centrale            | + Transmission    | 0          |
|                 |                               | mécanique par des |            |
|                 |                               | diptères          |            |

Les espèces de pathogènes indiquées en gras sont des agents de zoonoses.

TO: transmission trans-ovarienne TS: transmission trans-stadiale

\_

<sup>&</sup>lt;sup>10</sup> Le nouveau nom d'Ehrlichia bovis est Anaplasma bovis.

#### Pathogènes transmis par les tiques chez les ovins

Très peu de données épidémiologiques et cliniques sont disponibles sur les infections transmises par les tiques chez les petits ruminants en Tunisie. Ceci est surtout vrai chez les caprins, espèce assez souvent négligée en médecine vétérinaire.

Tableau 44: Principaux pathogènes transmis par les tiques chez les ovins

| Espèce<br>de tique | Pathogène           | Transmission                    | Importance |
|--------------------|---------------------|---------------------------------|------------|
| Rhipicephalus      | Babesia ovis        | TS, TO                          | +          |
| bursa              | Theileria ovis      | TS                              | 0          |
|                    | Babesia motasi      | TS, TO                          | +          |
|                    | Ehrlichia ovina     | TS + transmission<br>mécanique* | 0          |
|                    | Anaplasma ovis      | TS + transmission<br>mécanique* | ++         |
| Rhipicephalus      |                     |                                 |            |
| sanguineus sensu   |                     |                                 |            |
| lato *             |                     |                                 |            |
| Haemaphysalis      | Babesia motasi      | TS                              | Inconnue   |
| spp.               | Anaplasma ovis      | TS                              | ++         |
|                    |                     | Transmission<br>mécanique*      |            |
| Ixodes ricinus     | Anaplasma           | TS                              | +          |
|                    | phagocytophilum     |                                 |            |
| Diverses espèces   | Mycoplasma ovis     | Transmission                    | ++         |
| d'ixodidés         | (syn. Eperythrozoon | mécanique*                      |            |
|                    | ovis)               |                                 |            |
|                    | Coxiella burneti    | -                               | +++        |

<sup>\*</sup> La transmission mécanique est possible par les arthropodes hématophages et les seringues contaminées.

#### Pathogènes transmis par les tiques chez les équidés

Tableau 45: Principaux pathogènes transmis par les tiques chez les équidés

| Espèce de tique                           | Pathogène       | Transmission | Importance |
|-------------------------------------------|-----------------|--------------|------------|
| Dermacentor sp.<br>Hyalomma<br>marginatum | Babesia caballi | TS, TO       | +++        |
| Hyalomma scupense                         | Theileria equi  | TS           | +++        |
| Phiniaanhalus huma                        | Theileria equi  | TS           | +++        |
| Rhipicephalus bursa                       | Babesia caballi | TS, TO       | +++        |

#### Pathogènes transmis par les tiques chez les volailles

Tableau 46: Principaux pathogènes transmis par les tiques chez les volailles

| Espèce de tique | Pathogènes transmis               | Importance |
|-----------------|-----------------------------------|------------|
| Argas persicus  | Aegyptianella pullorum            | 0          |
|                 | Borrélioses aviaires              | 0          |
|                 | Mycoplasma gallisepticum          | +++        |
|                 | Variole aviaire (rôle accessoire) | +++        |
|                 | Maladie de Newcastle (rôle        | +++        |
|                 | accessoire)                       |            |
| Ornithodoros    | Peste porcine africaine           | +++        |
| moubata         |                                   |            |

#### Pathogène transmis par les tiques chez les tortues terrestres

La tortue grecque (*Testudo graeca*) est une espèce protégée, la vente, l'achat et l'élevage de cette espèce sont interdits en Tunisie. La tortue grecque peut être infectée par un hémoparasite transmis par *Hyalomma aegyptium*, espèce de tique spécifique des tortues terrestres : *Hemolivia mauritanica*.

Tableau 47: Pathogènes transmis par les tiques chez les tortues

| Espèce de tique | Pathogènes transmis                                | Importance |
|-----------------|----------------------------------------------------|------------|
|                 | Virus de la Fièvre Hémorragique de<br>Crimée Congo | +++        |
|                 | Hemolivia mauritanica                              | 0          |

### Pathogènes transmis par d'autres arthropodes

A part les tiques, le rôle pathogène des autres arthropodes est relativement faible en Tunisie. Les parasites indiqués cidessous, ne sont pas tous présents en Tunisie. D'autres n'ont jamais été décrits mais leur présence est suspectée.

Nous indiquons ces pathogènes pour mettre en évidence l'importance du rôle vecteur des arthropodes, certains pathogènes peuvent être introduits en Tunisie. Enfin, certains sont tellement importants que le vétérinaire doit les connaître.

#### Rôle vecteur de Psoroptes ovis

Vecteur possible des mycoplasmes de la chèvre.

#### Rôle vecteur des oribates<sup>41</sup>

Ce ne sont pas de vrais vecteurs mais les oribates forment un groupe d'acariens qui sont des hôtes intermédiaires de ténias des ruminants et des équidés.

<sup>-</sup>

<sup>&</sup>quot;Les oribates sont des acariens libres de 0,2 à 1,4 mm de taille. Ce sont des décomposeurs de matière organique (dont les fèces).

#### Rôle vecteur de Trombicula akamushi

Transmet à l'Homme *Orientia tsutsugamushi*, agent du typhus des broussailles (ou fièvre fluviale du Japon). Cette maladie n'existe pas en Tunisie, ni son vecteur d'ailleurs.

#### Rôle vecteur des hippobosques

Le rôle vecteur des hippobosques est faible, ils transmettent aux bovins *Trypanosoma theileri*, qui est une espèce non pathogène. Comme les autres diptères volants hématophages, ils peuvent transmettre également *Anaplasma* spp. et *Mycoplasma* spp.

#### Rôle vecteur de Melophagus ovinus

C'est le vecteur d'un trypanosome non pathogène des ovins : *Trypanosoma melophagium.* 

#### Rôle vecteur de Pseudolynchia canariensis

C'est un vecteur d'un protozoaire du sang et du système des phagocytes mononucléés du pigeon : *Haemoproteus columbae*.

#### Rôle vecteur des stomoxes (Stomoxys spp.)

Ces mouches piqueuses transmettent de manière mécanique plusieurs pathogènes, notamment *Anaplasma* spp. et *Mycoplasma* spp.

Les stomoxes sont des vecteurs biologiques d'*Habronema microstoma* (spirure des équidés) et d'*Hymenolepis carioca* (cestode des oiseaux).

\_

<sup>&</sup>lt;sup>12</sup> **Stomoxys:** du grec ancien, *stóma* (bouche) et *oxus* (aigu).

### **CLOMECTINE**

Closantel + Abamectine





ANTIPARASITAIRE INTERNE

### DalbenOLIGOS %2,5®

# Les parasites en moins le tonus en plus !



#### Rôle vecteur des glossines

Ce sont des vecteurs de plusieurs espèces de *Trypanosoma* spp., agent de trypanosomoses humaines africaines (THA) et animales. Ces mouches n'existent pas en Afrique du Nord, elles ne sont présentes qu'en Afrique subsaharienne.

#### Rôle vecteur des réduves

Vecteurs biologiques de *Trypanosoma cruzi*, agent de la maladie de Chagas, qui est une trypanosomiase exclusivement présente en Amérique latine. Les trypanosomes sont éliminés avec les matières fécales des réduves et traversent la peau via les lésions de grattage. Pour cette raison, cette espèce de trypanosome est qualifiée de stercoraire<sup>43</sup>.

#### Rôle vecteur des muscinés

Hôtes intermédiaires de parasites (*Parafilaria bovicola...*). Ce sont des vecteurs mécaniques de plusieurs bactéries. *Musca automnalis* est un vecteur mécanique de *Moraxella bovis*.

#### Rôle vecteur des simulies

Tableau 48: Principaux pathogènes transmis par les simulies

| Groupe      | Agent               | Situation en<br>Tunisie |
|-------------|---------------------|-------------------------|
| Filarioses  | Onchocerca volvulus | Régions tropicales      |
| Filarioses  | Onchocerca lienalis |                         |
| Protozooses | Leucocytozoon sp.   |                         |
| Viroses     | Virus myxomateux    | Présent                 |

97

<sup>&</sup>lt;sup>48</sup> **Sterco-:** préfixe du latin *stercus*, *stercoris* qui signifie excrément.

#### Rôle vecteur des tabanidés

Tableau 49: Principaux pathogènes transmis par les tabanidés

| Groupe       | Agent                  | Situation en<br>Tunisie | Importance |
|--------------|------------------------|-------------------------|------------|
|              | Trypanosoma evansi     | Présente                | +++        |
|              | Trypanosoma            | Présente                | 0          |
| Protozoaires | theileri               |                         |            |
|              | Besnoitia besnoiti     | Absente, présente       | +          |
|              |                        | en Europe               |            |
|              | Pasteurella spp.       | Présente                | +          |
|              | Francisella tularensis | Statut inconnu          | ++         |
| Bactéries    | Bacillus anthracis     | Présente                | +++        |
|              | Brucella spp.          | Présente                | +++        |
|              | Anaplasma spp.         | Présente                | ++         |
|              | Virus de l'anémie      | Absente                 | ++         |
|              | infectieuse des        |                         |            |
| Virus        | équidés                |                         |            |
|              | Virus de la leucose    | Présente                | +          |
|              | bovine                 |                         |            |
| Helminthes   | Loa loa                | Absente                 | 0          |

#### Rôle vecteur des phlébotomes (Encadré 1)

Les phlébotomes sont les vecteurs des leishmanies, parasites pathogènes pour l'Homme et les animaux. Ces protozooses sont d'une importance majeure : elles sont graves et fréquentes. De plus, leur distribution géographique est en train de s'étendre vers l'Europe du Nord.

#### Encadré 1 Les phlébotomes

Les phlébotomes appartiennent à 7 genres qui constituent la famille des psychodidés, ce ne sont donc pas des moustiques (culicidés).

Seules les femelles sont hématophages, elles se nourrissent, à la tombée de la nuit rarement le jour, sur les animaux à sang chaud et à sang froid. Le sang ingéré par la femelle est utilisé pour la maturation des œufs. Les mâles et les femelles se nourrissent de sucs végétaux sucrés comme le nectar.

Les phlébotomes sont de petite taille (environ 2 à 3 mm de taille), le vol de ces insectes est silencieux mais leur piqûre est douloureuse". Les femelles pondent leurs œufs sur les sols humides riches en matière organique. Les larves ne sont pas aquatiques, elles vivent dans des lieux peu accessibles enterrées dans les détritus. De ce fait, la lutte contre les phlébotomes est difficile.

\_

<sup>&</sup>quot; *Phlebotomus*: du grec, *phléps* (veine) et *tomê* (couper).

Tableau 50: Principaux pathogènes transmis par les phlébotomes

| Agent        | Parasite                                             | Vecteur                 | Importance<br>vétérinaire |
|--------------|------------------------------------------------------|-------------------------|---------------------------|
| Protozoaires | Leishmania P. perniciosus P. sergenti                |                         | +++                       |
|              | infantum                                             | et <i>P. perfeliewi</i> |                           |
|              | Plusieurs espèces de leishmanies sont :              |                         |                           |
|              | - Présentes en Tunisie et n'infectent que l'Homme 45 |                         |                           |
|              | - Absentes en Tunisie et infectent le chien          |                         |                           |
| Virus        | Virus punique                                        | Phlebotomus spp.        | 0                         |
|              | Virus toscana                                        | Phlebotomus spp.        | 0                         |

#### Rôle vecteur des puces

Tableau 51: Principaux pathogènes transmis par les puces

| Туре         | Nom du pathogène                                        | Vecteur                                             | Importance<br>vétérinaire |
|--------------|---------------------------------------------------------|-----------------------------------------------------|---------------------------|
| Bactéries    | Francisella<br>tularensis (LP, HO)                      | Spilopsyllus cuniculi<br>Ceratophyllus<br>fasciatus | 0                         |
|              | Burkholderia<br>pseudomallei (HO,<br>plusieurs espèces) | Plusieurs espèces                                   | 0                         |
|              | Coxiella burnetii<br>(HO, plusieurs<br>espèces)         | Plusieurs espèces                                   | +++                       |
|              | Salmonella spp.                                         | Plusieurs espèces                                   | +++                       |
| Helminthoses | Dipylidium<br>caninum (CN, CT,<br>HO)                   | Ctenocephalides sp.                                 | +++                       |

-

<sup>&</sup>lt;sup>43</sup> En Tunisie, le chien peut être piqué par des phlébotomes infectés par d'autres espèces de leishmanies (*L. tropica, L. major* ou *L. killicki*) ce qui risque de donner des réactions sérologiques faussement positives mais transitoires.

| Туре    | Nom du pathogène                         | Vecteur                                     | Importance<br>vétérinaire |
|---------|------------------------------------------|---------------------------------------------|---------------------------|
|         | Acanthocheilonema<br>reconditum (CN)     | Ctenocephalides sp.                         | 0                         |
|         | Hymenolepis<br>diminuta (RT,<br>Enfants) | Nosopsyllus fasciatus<br>Xenopsylla cheopis | +                         |
| Viroses | Virus de la<br>myxomatose (LP)           | Spilopsyllus cuniculi                       | ++                        |

#### Rôle vecteur des poux de l'Homme

Tableau 52: Pathogènes transmis par les poux de l'Homme

| Type            | Nom du pathogène      | Présence en Tunisie |
|-----------------|-----------------------|---------------------|
| Rickettsioses   | Rickettsia prowazeki  | Présente            |
|                 | Rickettsia quintana   | Absente             |
|                 | Borrelia recurrentis  | Absente             |
|                 | Rickettsia typhi 16   | Présente            |
| Rôle accessoire | Salmonella spp.       | Présentes           |
|                 | Yersinia pestis 47    | Absente             |
|                 | Rickettsia rickettsii | Absente             |

\_

<sup>&</sup>lt;sup>46</sup> Khrouf, F. *et al.* 2016. Molecular diagnosis of *Rickettsia* infection in patients from Tunisia, *Ticks and Tick-Borne Diseases*. 7(5), 653–656. DOI: 10.1016/J.TTBDIS.2016.02.010.

La peste est régulièrement rapportée dans plusieurs pays africains après des années de silence inter-épidémique. En Algérie la peste s'est déclarée à Oran en 2003 (silence inter-épidémique de 53 ans) et en 2008 à Laghouat. En 2009 une épidémie de peste s'est déclarée à Al Butnan en Libye (silence inter-épidémique de 25 ans) et une deuxième fois en 2011 dans la même région.

# Rôle vecteur des poux des animaux

Tableau 53: Principaux pathogènes transmis par les poux chez les animaux

| Groupe       | Nom du<br>pathogène                                     | Poux                                              | Présence en<br>Tunisie | Importance<br>vétérinaire |
|--------------|---------------------------------------------------------|---------------------------------------------------|------------------------|---------------------------|
| Helminthoses | Dipylidium<br>caninum (CN,<br>CT, HO)                   | Trichodectes<br>canis<br>Felicola<br>subrostratus | Présente               | +++                       |
| Viroses      | Virus de la<br>peste porcine<br>(PC)                    | Haematopinus<br>suis                              | Absente                | +++                       |
|              | Virus de<br>l'anémie<br>infectieuse des<br>équidés (CV) | Haematopinus<br>asini                             | Absente 48             | +++                       |

# Rôle vecteur de Culicoides spp.

En Tunisie, 35 espèces de *Culicoides* ont été décrites, elles transmettent, avec une capacité vectorielle très variable, plusieurs pathogènes.

Tableau 54: Principaux pathogènes transmis par les Culicoides

| Groupe     | Pathogène                                              | Situation en<br>Tunisie | Importance |
|------------|--------------------------------------------------------|-------------------------|------------|
| Filarioses | Onchocerca cervicalis<br>(CV)<br>Onchocerca reticulata | Inconnue<br>Inconnue    | 0          |

-

<sup>&</sup>lt;sup>18</sup> Boussetta M., Chabchoub A., Ghram A., Jomaa I., Ghorbel A., Aouina T., Ben Amor H. 1994. Enquête séroépidémiologique sur la grippe et l'anémie infectieuse des équidés dans le nord-est tunisien. *Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux*, 47 (3), 277-81.

| Groupe  | Pathogène                                                                                | Situation en<br>Tunisie | Importance |
|---------|------------------------------------------------------------------------------------------|-------------------------|------------|
|         | (CV)                                                                                     |                         |            |
|         | Onchocerca gutturusa<br>(BV)                                                             | Présente                | 0          |
|         | Dipetalonema perstans (HO)                                                               | Absente                 | 0          |
| Viroses | Vrisu de la fièvre<br>catarrhale maligne du<br>mouton ( <i>blue tongue</i> )<br>(OV, BV) | Présente                | +++        |
|         | Virus de la fièvre<br>éphémère des bovins<br>(BV)                                        | Absente                 | 0          |
|         | Virus de la peste bovine (BV)                                                            | Éradiquée               | 0          |
|         | Virus de Schmallenberg<br>(OV, CP, BV)                                                   | Europe                  | ++         |

## Rôle vecteur des culicidés

Tableau 55: Principaux pathogènes transmis par les culicidés

| Maladie                          | Vecteur    | Situation en Tunisie               | Importance |
|----------------------------------|------------|------------------------------------|------------|
| Paludisme <sup>49</sup> (HO, VO) | Anopheles  | Éradiqué en Tunisie                | +++        |
|                                  | spp.       | depuis 1975                        |            |
|                                  |            | Cas d'importation et               |            |
|                                  |            | paludisme d'aéroport <sup>50</sup> |            |
| Fièvre jaune (HO)                | Aedes spp. | Absente en Tunisie                 | +++        |
| Dengue (HO)                      | Aedes      | Absente en Tunisie                 | +++        |
|                                  | aegypti    |                                    |            |

 $<sup>^{\</sup>tiny \circ}$  Le paludisme est aussi appelé la malaria (de l'italien : mala (mauvais) aria (air)).

<sup>&</sup>lt;sup>50</sup> Quatre cas de paludisme d'aéroport ont été déclarés à Tunis dans le quartier Les Berges du Lac en juillet 2013.

| Maladie                                 | Vecteur                           | Situation en Tunisie                        | Importance |
|-----------------------------------------|-----------------------------------|---------------------------------------------|------------|
| Encéphalites à virus (HO, CV)           | Culex spp.                        | Absentes en Tunisie                         | ++         |
| West Nile (HO, CV, VO)                  | Culex spp.<br>Aedes spp.          | Présente, plusieurs<br>épisodes depuis 1997 | +++        |
| Myxomatose (LP)                         | Culex spp.<br>Aedes spp.          | Présente                                    | ++         |
| Chikungunya (HO)                        | Aedes<br>albopictus <sup>51</sup> | Iles de la Réunion, Italie                  | ++         |
| Fièvre de la vallée du<br>Rift (OV, HO) | Aedes spp.                        | Égypte                                      | +++        |
| Variole aviaire (VO)                    | Aedes spp.                        | Présente, élevages<br>fermiers              | +++        |
| Peste équine (CV)                       | Aedes spp.<br>Culex spp.          | Maroc                                       | +++        |
| Dirofilariose (CN, CT, HO)              | Culex spp.,<br>Aedes spp.         | Présente                                    | +++        |
| Sétariose équine (CV)                   | Culicidés                         | Présente                                    | +          |

BV: bovin, CN: chien, CV: cheval, CT: chat, HO: Homme,

PC: porc, LP: lapin, RT: rat, VO: volaille

<sup>&</sup>lt;sup>51</sup> Aedes albopictus a été retrouvée pour la première fois en Tunisie à Amilcar et à la Marsa en 2018. Bouattour A. Khrouf F., Rhim A., M'ghirbi Y. 2019. First detection of the Asian tiger mosquito, Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Tunisia. Journal of Medical Entomology. 56(4), pp. 1112–1115. DOI: 10.1093/jme/tjz026.

# Techniques de diagnostic de laboratoire des parasitoses

Le nombre de techniques de diagnostic des parasitoses est impressionnant, pour chacune d'entre-elles, il existe même des variantes. Nous allons présenter dans ce qui suit, les principales techniques utilisables chez les animaux domestiques applicables dans un cabinet vétérinaire avec un minimum de matériel. Lorsque plusieurs variantes existent, nous avons choisi la plus facile parmi elles.

La mise en œuvre de certaines de ces techniques est parfois difficile au début, elle devient par la suite une affaire de routine.

# Diagnostic sur l'animal

# Recherche du prurit

### **Définition**

Le prurit est un signe fonctionnel, il se définit comme étant « *Une sensation de démangeaison de la peau qui donne l'envie de se gratter* ». Le prurit est un comportement normal chez l'Homme et les animaux son intensité, sa durée et sa fréquence sont limitées. Néanmoins, la limite entre le normal et le pathologique est difficile à établir dans certains cas.

Il peut être **mis en évidence** (il faut observer pendant quelques minutes l'animal) ou **induit** (réflexe audito-podal, réflexe oto-podal...) ou **par la recherche des lésions auto-induites** (tonsure<sup>52</sup>, dépilation, chute de la laine, excoriations, ulcères, griffades, mordillements, lichénification, surinfections ...).

### Physiopathologie

Le prurit peut être physiologique, s'il est peu fréquent et peu intense, ce type de prurit est plus fréquent la nuit. Le principal médiateur du prurit est l'histamine. Néanmoins, elle n'est pas la seule car certains prurits sont d'origine centrale.

\_

<sup>&</sup>lt;sup>52</sup> **Tonsure** (du latin, *tonsura*): tondre.

### Limites

Il est important de rappeler que le prurit est un comportement, il varie de ce fait en fonction de l'état psychologique de l'animal.

- [1] Le prurit diminue ou disparait si l'animal est stressé ou a peur, lors de l'examen clinique par exemple.
- [2] La présence d'une douleur inhibe le prurit.
- [3] Il existe des animaux lymphatiques<sup>53</sup> qui expriment très peu ce comportement, d'autres au contraire sont très excitables et exagèrent dans l'expression de ce comportement.
- [4] Les animaux présentant une maladie grave ou abattus ou ayant reçu un psychotrope ou un corticoïde ne se grattent pas.
- [5] Il existe des psychoses se traduisant par la présence d'un prurit pouvant aller jusqu'à l'automutilation.

# Comment objectiver la présence d'un prurit?

Le prurit se caractérise par :

[1] Sa localisation: généralisé ou localisé à une partie anatomique (si oui, laquelle?).

- [2] Sa fréquence : est ce qu'il est limité à une période de la journée (la nuit par exemple) ou à un lieu donné (séjour dans une ferme...)?
- [3] Son intensité: est ce qu'il est modéré, intense ou incoercible<sup>54</sup>?

\_

<sup>&</sup>lt;sup>ss</sup> **Lymphatique :** qui est particulièrement nonchalant, d'une grande mollesse et d'une certaine lenteur de gestes (Dictionnaire Larousse).

<sup>&</sup>lt;sup>54</sup> **Incoercible :** qu'on ne peut contenir, arrêter.

- [4] Sa durée : est ce que l'animal se gratte pendant une durée plus ou moins longue ?
- [5] Son type: mordillement, léchage, grattage contre des objets ou avec les membres.

# Recherche du prurit

# Réflexe otopodal

Masser l'oreillon du chien, si le réflexe est positif, l'animal présente une réaction de satisfaction (tend la tête, devient calme, effectue un mouvement de pédalage avec les postérieurs...).

Ce réflexe est positif chez les chiens atteints de gale sarcoptique.

# Réflexe audito-podal

Introduire une tige propre non contendante dans le conduit auditif de l'animal (éviter d'utiliser des tiges métalliques qui sont froides ou en bois, difficiles à désinfecter).

Si le réflexe est positif, l'animal réagit, l'intensité de la réaction est variable en fonction de la lésion, l'agent pathogène et le tempérament de l'animal. La réponse peut aller d'une simple réaction de satisfaction (l'animal tend la tête) à des mouvements de pédalage avec l'un des membres postérieurs (généralement du même côté).

Ce réflexe est positif lors de la présence d'un prurit dans le conduit auditif (otacariose, levurose, otite purulente, beaucoup moins lors de présence d'un corps étranger).

### Réaction de satisfaction

Grattez la région anatomique lésée, si le réflexe est positif, l'animal présente une réaction de satisfaction (l'animal tend la tête, le corps ou renverse ses lèvres).

Cette réaction est observée chez toutes les espèces animales mais elle est très manifeste chez les ovins atteints de gale.

# Examen à la lampe de Wood

Recherche des spores de teinges chez le chien et le chat.

# **Principe**

L'examen à la lampe de Wood permet de rechercher les spores de teignes sur le pelage des animaux.

### Réalisation

Il consiste à examiner, dans une chambre noire, des lésions d'un animal suspect (chien ou chat) avec une source d'ultraviolet préchauffée pendant au moins 15 minutes (longueur d'onde : 365 nanomètres).



Figure 6: Lampe de Wood (www.forums.france2.fr)

Les spores apparaissent en vert-fluorescent, cette coloration est due à la présence de la ptéridine qui est le produit de dégradation du tryptophane (acide aminé aromatique) qui est dégradé par les mycéliums des agents de teignes.

Comme tout test, il faut disposer d'un témoin positif et d'un témoin négatif. Le témoin positif est représenté par les trotteuses d'une montre, le témoin négatif est l'ongle du clinicien.

Il est important de différencier la fluorescence spécifique de celle des croûtes et des furfures qui est bleue !

### **Performances**

Cette technique manque de sensibilité, puisque seules 50% des souches de *Microsporum canis* donnent une fluorescence.

Elle manque aussi de spécificité, car elle donne des réponses faussement positives si des substances iodées ou des pommades à base de cyclines ont été appliquées sur le corps de l'animal.

Ce test est également positif lors de dermatoses à *Pseudomonas* spp.

### **Précautions**

Le rayonnement ultraviolet est nocif pour les yeux, il ne faut pas diriger la lampe de Wood vers les yeux d'un être humain ou des carnivores. La teigne est une zoonose parasitaire, mineure certes mais très récalcitrante<sup>55</sup> chez l'Homme, il est de ce fait important de prendre les précautions nécessaires pour se protéger.

-

 $<sup>^{\</sup>mbox{\tiny ss}}$  Il y a une maxime qui dit : qui a fait une teigne fera une teigne.

# Choix de la zone du prélèvement cutané

Le choix de la zone de prélèvement est capital pour augmenter les chances de trouver les parasites, certaines règles sont à observer:

- [1] Choisir les lésions les plus récentes.
- [2] Choisir des lésions non traitées.
- [3] Choisir une zone non remaniée (absence de réactions d'hyperkératose intense par exemple).
- [4] Effectuer le prélèvement au niveau de la zone active de la lésion, c'est-à-dire, au niveau de la limite entre la peau saine et la peau lésée. En effet, au milieu de la lésion, la réaction de l'hôte et les remaniements histologiques provoqués par les parasites rendent la lésion dysgénésique<sup>56</sup> pour le parasite. Sur la peau saine, la probabilité de trouver des parasites est très faible.

<sup>&</sup>lt;sup>56</sup> **Dysgénique :** qui se reproduit mal.



Figure 7 : Choix du lieu de prélèvement pour la recherche d'ectoparasites

[5] Ne conclure que le prélèvement est négatif que si 4 prélèvements négatifs ont été réalisés dans 4 zones différentes.

# Calques cutanés

Mise en évidence de bactéries et de levures sur une peau avec des lésions humides.

- [1] Choisir une zone humide.
- [2] Appliquer une lame porte-objet sur la lésion.
- [3] Laisser sécher.
- [4] Fixer au méthanol pur.
- [5] Colorer au Giemsa.

Tableau 56 : Comment faire la différence entre Candida et Malassezia?

| Malassezia spp.                       | Candida spp.                                                               |
|---------------------------------------|----------------------------------------------------------------------------|
| Levures de forme sphérique ou         |                                                                            |
| ellipsoïdale (qualifiée « d'empreinte | Petites levures bourgeonnantes                                             |
| de pied » ou « en bouteille de        | rondes ou ovalaires                                                        |
| Perrier » ou « en cacahuète »)        |                                                                            |
| Formes bourgeonnantes                 | Formes bourgeonnantes                                                      |
| 3 à 4 μm de taille (jusqu'à 7 μm)     | 2 à 4 μm de taille                                                         |
| Isolées ou regroupées en amas         | Souvent associées à des filaments                                          |
| Mycéliums rares                       | mycéliens ou pseudo-mycéliens                                              |
| Levures filles séparées des levures   | I armona Cillan administra de la larmona                                   |
| mères par un large goulot             | Levures filles séparées des levures<br>mères par un goulot étroit étranglé |
| Séparées par une cloison              | meres par un gouiot etroit etrangie                                        |

# Calque cutané avec une lame

Mise en évidence de bactéries et de levures sur une peau avec des lésions sèches.

- [1] Choisir la zone la plus humide à prélever. Si la lésion est sèche, essayez quand même mais la probabilité de trouver des pathogènes est faible.
- [2] Racler la peau avec la lame.
- [3] Apposer le produit de reclage sur une lame porte-objet.
- [4] Laisser sécher.
- [5] Fixer au méthanol.
- [6] Colorer au Giemsa.
- [7] Examiner au microscope à l'objectif x100 et à l'huile à immersion.

# Calque cutané avec un film adhésif

# Recherche de Cheyletiella spp.

- [1] Choisir une zone cutanée suspecte.
- [2] Apposer la face adhésive du film contre la peau.
- [3] Placer le film sur une lame porte-objet.
- [4] Examiner au microscope optique à l'objectif x10 puis x40 (Figure 8).



Figure 8 : Méthode de lecture d'une lame

# Trichogramme

Recherche des agents de teignes.

- [1] Épiler avec une pince (ou couper avec un paire de ciseaux) au niveau de la zone suspecte au moins 20 poils.
- [2] Placer les poils alignés sur une lame porte-objet.
- [3] Ajouter une goutte de chloral-lactophénol.
- [4] Examiner au microscope à l'objectif x10 puis x40.

| Encadré 2 : Préparation du chloral lactophénol |       |  |  |
|------------------------------------------------|-------|--|--|
| Eau bi-distillée                               | 20 ml |  |  |
| Glycérine                                      | 40 g  |  |  |
| Acide lactique (commercial concentré)          | 20 g  |  |  |
| Phénol en cristaux                             | 20 g  |  |  |

Ajouter les réactifs dans l'ordre indiqué Agiter modérément avec une baguette Tous les réactifs doivent être totalement dissous

Il est possible aussi de rajouter de la potasse (KOH) à 10% au lieu du lactophénol puis de chauffer la lame jusqu'à ébullition du mélange. Ainsi, les spores de teigne sont plus faciles à voir.

Dans ce cas, il faut faire attention pour que la fumée ne se dépose pas sous la lame, il devient alors impossible de la lire.

# Brossage de l'animal

- [1] Placer l'animal sur un papier filtre
- [2] Brosser le pelage de l'animal énergiquement avec une brosse propre et sèche. Il est important de bien nettoyer la brosse avant et après chaque utilisation pour éviter les faux positifs et les contaminations croisées des animaux.
- [3] Collecter le produit de brossage
- [4] Examiner le produit de brossage minutieusement à l'œil nu puis sous une loupe binoculaire.

La mise en évidence indirecte des puces peut être réalisée en recherchant leurs déjections qui ressemblent à des petits points noirs rappelant le poivron moulu. Sous microscope, les déjections rappellent des assiettes cassées.

- [1] Placer une goutte d'eau sur les formes suspectes collectées sur le papier filtre.
- [2] Incliner tout de suite le papier.
- [3] L'hémoglobine présente dans les déjections se dissout et dégouline sur le papier en créant une trainée rouge.

# Raclage cutané

Recherche de Demodex spp. et de Sarcoptes scabiei.

Le raclage cutané doit être effectué jusqu'à la formation d'une mare sanguine (formation d'une petite flaque de sang). En effet, *Sarcoptes scabiei* sont des parasites dits térébrants<sup>57</sup> et donc doivent être cherchés en profondeurs du derme. *Demodex* spp. se localisent dans le follicule pilo-sébacé.

- [1] Avec un scalpel imbibé de lactophénol, racler la peau jusqu'à la formation d'une petite flaque de sang.
- [2] Placer le prélèvement sur une lame porte-objet contenant une goutte de chloral lactophénol.
- [3] Couvrir avec une lamelle couvre-objet.
- [4] Examiner sous le microscope à l'objectif x10 puis x40.

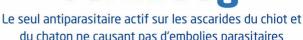
\_

<sup>&</sup>lt;sup>57</sup> **Térébrant :** (du latin, *terebrare*) percer avec une tarière.

# Digestion potassique

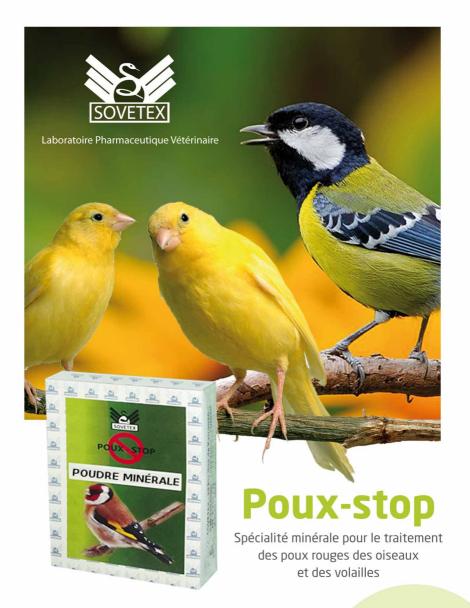
Recherche des agents de la gale sarcoptique si les croûtes prélevées sont épaisses.

Elle est utilisée systématiquement pour le diagnostic de la gale psoroptique (*Psoroptes ovis*) chez les herbivores car ce sont des parasites superficiels.


- [1] Prélever une touffe de laine (ou de poils).
- [2] Placer l'échantillon dans un tube à essai rempli de potasse à 10%.
- [3] Chauffer jusqu'à ébullition et digestion totale de la laine (ou des poils).
- [4] Placer la solution dans une boite de Pétri.
- [5] Examiner la solution sous une loupe binoculaire au plus fort grossissement ou sous microscope à l'objectif x10 puis x40.

# Prélèvement du cérumen

Mise en évidence de bactéries (déterminer le **type** de bactérie coques ou bacilles et **l'intensité** d'infection) et de levures (Malassezia *spp.*, Candida *spp.*..).


- [1] Prélever une petite quantité de cérumen avec une curette.
- [2] Étaler le cérumen sur une lame (bien étaler le produit pour garder la lame transparente).
- [3] Laisser sécher.
- [4] Fixer au méthanol pur pendant 5 minutes.
- [5] Colorer au Giemsa pendant 10 minutes.
- [6] Examiner sous microscope à l'objectif x40 puis x100 à l'huile d'immersion.





du chaton ne causant pas d'embolies parasitaires







# Coprologie

# Diagnostic coprologique

### Encadré 3 : Matériel nécessaire pour effectuer une coprologie

- 1. Microscope optique avec des objectifs x10 (ou x20), x40 et x100.
- 2. Tubes à essai.
- 3. Verre à pied.
- 4. Passoire à thé.
- 5. Lames porte-objets.
- 6. Lamelles couvre-objets.
- 7. Solution saturée de chlorure de sodium ayant une densité de 1,20 (mélanger 330 g de sel de cuisine et compléter à 1 L avec de l'eau distillée).

D'autres réactifs sont nécessaires pour la réalisation des techniques spécifiques.

La lutte contre les helminthoses digestives doit impérativement passer par un diagnostic coprologique.

Il faut recourir à cette technique aussi bien devant un cas individuel que dans le cadre d'une approche de prophylaxie collective.

### Pourquoi?

La coprologie est un outil diagnostic très utile dans plusieurs situations:

- [1] Lorsque le praticien ne connaît pas la région (ou l'élevage). Cette technique lui permet de mieux connaître le contexte dans lequel il va travailler.
- [2] Devant un tableau clinique qui prête à confusion avec d'autres maladies.
- [3] Pour le suivi clinique des animaux traités.
- [4] Pour connaître le *turnover* de l'infestation des animaux.
- [5] Lors d'échec thérapeutique, cette technique permet alors de mettre en évidence, de manière relativement précoce, la présence d'une résistance aux antiparasitaires.

### Comment P

Ce diagnostic consiste à prélever au moins 5 grammes de matières fécales à partir du rectum ou fraichement émises par l'animal (dans ce cas, prélever la partie supérieure des matières fécales).

Accompagnées d'une fiche de commémoratifs, elles doivent être acheminées au laboratoire dans les heures qui suivent. Si le laboratoire est loin, elles peuvent être conservées à +4°C pendant deux à trois jours ou mélangées avec de l'eau formolée à 5%<sup>38</sup>. Ces précautions sont à prendre pour éviter l'éclosion des oeufs.

<sup>&</sup>lt;sup>88</sup> Si de l'eau formolée a été ajoutée aux échantillons de fèces, la coproculture

devient alors impossible. Vu sa toxocité pour l'Homme, l'utilisation du formol dans les laboratoires est controversée.

### Qui?

La coprologie ne doit pas concerner exclusivement les animaux malades. Elle doit être effectuée sur tous les groupes épidémiologiques : mâles, femelles, jeunes, adultes, malades et non malades.

Il faut par la suite comparer les résultats obtenus sur ces différents groupes d'animaux.

### Combien ?

Ce diagnostic est d'autant plus intéressant qu'il n'est pas onéreux, il est rapide et facile à réaliser.

### Quoi?

Le laboratoire va chercher des œufs dans le cas de suspicion de strongyloses digestives et de larves dans le cas de strongyloses respiratoires, il exprime les résultats de deux manières:

- **Résultats qualitatifs :** en informant sur la présence ou l'absence d'œufs de strongles ou d'autres formes parasitaires (ténias, ookystes coccidiens, *Giardia, Cryptosporidium,* larves de strongles respiratoires).
- **Résultats quantitatifs :** il s'agit d'estimer le nombre d'œufs par gramme de matières fécales. Il est préférable de demander une étude quantitative qui donne une idée sur l'intensité d'infestation. Il est important de noter qu'il n'existe pas de relation directe entre le nombre d'œufs par gramme et l'intensité d'infestation (nombre de parasites hébergés réellement par l'hôte).

Il existe plusieurs techniques coprologiques, nous présentons ci-dessous les variantes les plus simples et qui nécessitent le minimum de matériel afin que les praticiens puissent les réaliser dans leurs cabinets.

# Examen macroscopique

# Caractérisation macroscopique des fèces

C'est une étape importante dans l'étude coprologique, il faut bien examiner les matières fécales macroscopiquement pour évaluer différents éléments :

- [1] **Couleur :** présence de sang, décoloration des matières fécales, melaena...
- [2] Odeur: fétide, aigre...
- [3] **Consistance**: ramollie, pâteuse, liquidienne...
- [4] **Présence d'éléments figurés :** aliments non digérés, éléments parasitaires (segments de cestodes, gastérophiles, ascarides...), fragments de corps étrangers...

#### Examen direct

Recherche rapide des parasites dans les fèces.

- [1] Prélever des fèces.
- [2] Placer une petite quantité de fèces sur une lame porteobjet.
- [3] Mélanger avec une goutte d'eau de robinet.
- [4] Examiner directement au microscope à l'objectif x10 puis x40.

Cette technique est facile, rapide, ne coûte pratiquement rien mais elle manque de sensibilité. Elle ne permet de détecter que les animaux fortement infestés car elle manque de sensibilité. En effet, la quantité de fèces examinée est infime. De ce fait, c'est une technique d'orientation dont les résultats ne seront pris en considération que s'ils sont positifs.

#### Technique à la cellophane adhésive

Mise en évidence des œufs des deux espèces d'oxyures parasitant les équidés : Oxyurus equi et Probstmayria vivipara.

Chez les équidés, les œufs des oxyures ne sont généralement pas trouvés dans les fèces. Le soir et au début de la nuit, les femelles pondent les œufs dans les replis de l'anus. La recherche des œufs se fait par la technique de Graham à la cellophane adhésive (scotch-test).

- [1] Le soir, bien laver la région honteuse et la queue du cheval.
- [2] Le lendemain matin, apposer une bande de cellophane adhésive sur les marges de l'anus.
- [3] Coller la bande sur une lame porte-objet.
- [4] Examiner au microscope à l'objectif x10 puis x40.

#### Technique de flottation

Mise en évidence des œufs de cestodes, de strongles digestifs et des ookystes coccidiens et de manière moins importante, des larves des strongles respiratoires. Les larves sont lourdes et ne flottent pas, si elles sont détectées par cette technique, c'est à dire que l'animal est hyperinfesté.

- [1] Identifier le prélèvement (date, espèce et animal).
- [2] Bien mélanger 5 g de fèces avec 75 ml d'une solution dense.
- [3] Filtrer avec une passoire à thé.
- [4] Remplir avec le filtrat un tube à essai jusqu'à formation d'un ménisque convexe.
- [5] Couvrir avec une lamelle couvre-objet en évitant la formation de bulles d'air <sup>59</sup>.
- [6] Laisser reposer pendant 15 à 20 minutes<sup>60</sup>.
- [7] Récupérer la lamelle sur une lame porte-objet.
- [8] Examiner au microscope optique à l'objectif x10 puis x40.

-

<sup>&</sup>lt;sup>39</sup> Les bulles d'air empêchent la remontée des formes parasitaires.

<sup>&</sup>lt;sup>60</sup> En dessous de cette durée, les formes parasitaires n'auront pas le temps de remonter et dépassé ce délai, les formes parasitaires s'altèrent sous l'effet de la solution hypertonique.

## Coprologie quantitative (technique de Mc Master)

Estimation de l'intensité d'infestation par les parasites digestifs.

- [1] Filtrer les matières fécales en respectant les quantités indiquées ci-dessus.
- [2] Remplir avec une pipette les deux cellules d'une lame McMaster.
- [3] Compter le nombre total d'œufs dans les deux cellules, puis multiplier par 50 pour retrouver le nombre d'œufs par gramme.

# Recherche des larves de strongles respiratoires

Recherche des larves de strongles respiratoires et d'Angiostrongylus vasorum.

Étant lourdes, les larves de strongles respiratoires doivent être recherchées en exploitant leur comportement de géotropisme positif (les larves ont tendance à s'enfoncer dans le sol) et d'hygrotropisme positif (les larves ont tendance à chercher l'humidité). Plusieurs techniques peuvent être utilisées, la plus simple est la technique de Mc Kenna (Figure 9).

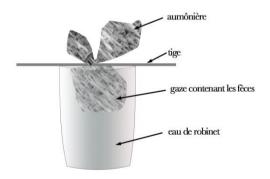



Figure 9 : Dispositif de la technique de McKenna

- [1] Plier deux gazes en 4 et la nouer autour d'une tige en aumônière<sup>61</sup>.
- [2] La plonger partiellement dans un verre à pied rempli d'eau.
- [3] Incuber pendant 8 à 48 heures.
- [4] Jeter le surnageant et ne garder que 5 à 10 ml du culot.
- [5] Centrifuger (1 500 tours pendant 5 minutes) le mélange et jeter le surnageant.
- [6] Examiner le culot au microscope optique à l'objectif x10 puis à l'objectif x40.

#### Encadré 4

Différenciation entre les larves des strongles respiratoires cez les petits ruminants

Chez les petits ruminants, il est important de faire la différence entre les larves 1 de protostrongylidés (*Protostrongylus rufescens*, *Cystocaulus ocreatus*, *Muellerius capillaris* et *Neostrongylus linearis*) et celles de dictyocaulidés (*Dictyocaulus filaria*) (Figure 10). Comparé à celui des dictyocaulidés, le pouvoir pathogène des protostrongylidés est faible.

141

<sup>&</sup>lt;sup>61</sup> **Aumônière :** bourse portée à la ceinture dans laquelle est placé l'argent destiné à l'aumône.

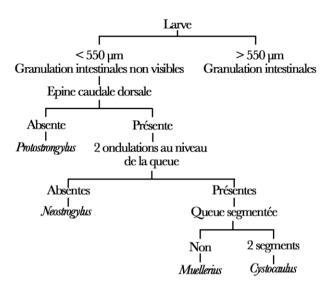



Figure 10 : Eléments de diagnose différentielle entre les larves 1 des strongles respiratoires des petits ruminants

#### Recherche d'œufs de trématodes

Recherche des œufs de trématodes.

Étant plus lourds que ceux des nématodes, les œufs de trématodes ne peuvent pas être mis en évidence par la technique de flottation avec les solutions usuelles.

- [1] Diluer les fèces dans une solution d'eau distillée.
- [2] Bien mélanger.
- [3] Filtrer dans une passoire à thé.
- [4] Centrifuger à 1 500 tours/minutes pendant 15 minutes.
- [5] Jeter le surnageant et ne garder que 2 ml du culot.
- [6] Mélanger le culot avec 1 ml de bleu de méthylène à 1 p. 1 000.
- [7] Examiner sous la loupe binoculaire (grossissement x40) ou au microscope optique (objectif x10 ou x20).

#### La technique de Ziehl Nielsen modifiée

Recherche des ookystes de Cryptosporidium spp., protozoaires assez souvent à l'origine de diarrhées, notamment chez les jeunes animaux.

#### Encadré 5 : Matériel nécessaire pour réaliser la coloration de Ziehl Nielsen modifiée

Lame porte-objet.

Méthanol absolu.

Fuchsine de Ziehl.

Acide sulfurique à 5%.

Bleu de méthylène à 3 p.1 000.

Microscope optique avec un objectif x100.

Huile à immersion.

- [1] Étaler une petite quantité de fèces sur une lame porteobjet.
- [2] Sécher à l'air libre.
- [3] Fixer au méthanol absolu pendant 5 minutes.
- [4] Flamber rapidement le verso de lame avec un bec bunsen ou une autre flamme.

- [5] Colorer dans un bain de fuchsine phéniquée<sup>62</sup> pendant 5 minutes.
- [6] Rincer à l'eau de robinet.
- [7] Appliquer quelques gouttes d'acide sulfurique à 5% pendant 20 secondes à 1 minute.
- [8] Rincer la lame sous l'eau du robinet.
- [9] Colorer pendant 10 minutes dans du bleu de méthylène à 3 p. 1 000.
- [10] Rincer sous l'eau de robinet et sécher à l'air libre.
- [11] Observer la lame sous microscope à objectif x100 et à l'huile à immersion.

6

<sup>&</sup>lt;sup>®</sup> **Fuchsine de Ziehl :** fuchsine basique (10 g), phénol (50 g), éthanol (100 mL) et eau distillée (1 L).

#### La technique de Telemann

C'est une méthode diphasique utilisée pour la recherche d'éléments parasitaires dans les fèces d'animaux ayant des matières fécales grasses telles que celles du chat, du chien et du porc.

#### Encadré 6 : Matériel nécessaire pour réaliser la technique de Telemann

Lame porte-objet

Acide acétique à 5%

Éther

Acide sulfurique

Tubes à centrifuger

Centrifugeuse

Microscope optique avec un objectif x10 et x40

- [1] Prélever 5 grammes de fèces.
- [2] Ajouter 25 ml d'acide acétique à 5%.
- [3] Bien mélanger.
- [4] Tamiser.
- [5] Placer 5 ml du filtrat dans un tube à centrifuger.
- [6] Ajouter 5 ml d'éther.
- [7] Agiter fortement.
- [8] Centrifuger 1 minute à 1 500 tours/minute.

- [9] Examiner sous microscope à l'objectif x10 puis x40.
- [10] Décoller le bouchon gras qui s'est formé à mi-hauteur et le jeter.
- [11] Rechercher les éléments parasitaires dans le culot de la solution.

#### Recherche de Giardia spp.

Recherche des trophozoïtes et des kystes par la technique de flottaison<sup>®</sup>. L'examen direct permet la mise en évidence de trophozoïtes mobiles.

- [1] Prélever une très petite quantité de fèces.
- [2] Placer les fèces sur une lame porte-objet.
- [3] Mélanger-les avec une goutte de sérum ou de plasma (ou à défaut de sang).
- [4] Étaler le mélange en formant un film très fin.
- [5] Laisser sécher à l'air libre.
- [6] Examiner à l'objectif x40 pour chercher les trophozoïtes ou les kystes.

148

<sup>&</sup>lt;sup>63</sup> Les termes « flottation » ou « flottaison » sont tous les deux justes.

# Comment interpréter les résultats d'analyses coprologiques ?

Les résultats coprologiques doivent être interprétés en superposant le contexte épidémiologique, les données cliniques et les résultats du laboratoire.

La coprologie est entachée d'erreurs que le clinicien doit considérer lors de l'interprétation d'un résultat coprologique :

#### Faux négatifs

Il est possible d'obtenir des résultats coprologiques négatifs chez des animaux qui sont vraiment infestés.

Les faux négatifs ont plusieurs origines :

- Manque de sensibilité de la technique du fait de la petitesse de la quantité de matière fécale examinée.
- La présence d'une diarrhée qui dilue les fèces et réduit ainsi la probabilité de trouver des œufs.
- Un déséquilibre du sex-ratio des nématodes, il y a beaucoup plus de mâles que de femelles ou vice versa. En effet, les œufs de nématodes ne sont produits que par les femelles fécondées!

- Des symptômes provoqués par des larves et non par des adultes.
- Une pression immunitaire relativement élevée inhibant la ponte des femelles.
- Le nombre d'œufs éliminés par les parasites est fluctuant dans le temps. Ainsi, l'intensité de ponte de *Fasciola hepatica* est maximale vers 14 heures.
- Lors d'infestation des animaux par des cestodes adultes (ténias), il est possible d'obtenir des résultats négatifs si les segments ne se sont pas rompus dans le tube digestif de l'animal ou lors de la manipulation des fèces.

#### Faux positifs

- La constipation provoque une concentration des fèces qui est à l'origine d'une surestimation de l'intensité d'infestation.
- Il n'y a pas une relation de causalité entre le tableau clinique observé et la présence des œufs. Ainsi, il existe un seuil pour chaque espèce animale au dessus duquel l'animal est considéré comme atteint de strongylose digestive :

Ovins: 1 000 œufs/gramme Bovins: 300 œufs/gramme Équidés: 500 œufs/gramme

Chez les petits ruminants, on suppose qu'une infestation supérieure à 1 000 œufs/gramme (opg) indique la présence d'une infestation massive. Si le nombre d'opg est compris entre 500 et 1 000, l'infestation est modérée. Ce nombre varie en fonction de plusieurs facteurs : espèce du parasite (certains

sont très prolifiques, d'autres beaucoup moins, certains sont très pathogènes, d'autres ont un pouvoir pathogène très modéré), l'immunité de l'hôte...

#### Néanmoins, certains cas particuliers sont à prendre en considération :

- Cas des cestodes : aucune estimation de l'intensité d'infestation ne peut être réalisée si le résultat est positif. En effet, les œufs de cestodes observés émanent de la rupture d'un ou plusieurs segments.
- Cas de parasites à haut pouvoir pathogène tels que *Fasciola hepatica* ou *Haemonchus* spp. : il faut dans ces cas considérer les animaux comme malades même si un seul œuf a été observé dans les fèces.

La manipulation des matières fécales nécessite l'observation stricte des règles d'hygiène car il y a un risque de transmission de zoonoses!

#### Recherche des parasites du sang et du système des phagocytes mononucléés

#### Technique de Giemsa

Diagnostic et dépistage de plusieurs parasitoses : protozooses digetives (giardiose), leishmaniose et hémopathogènes (Babesia spp., Theileria spp., Bartonella spp., Trypanosoma spp.)...

Cette technique est facile, rapide et n'est pas onéreuse, elle offre dans plusieurs situations, un diagnostic de certitude.

#### Encadré 7 : Matériel nécessaire pour réaliser la coloration de Giemsa

Seringues de 5 ml.

Tubes EDTA.

Eau distillée neutre (pH = 7,2).

Méthanol absolu.

Colorant Giemsa.

Lames porte-objets.

Huile à immersion.

Microscope optique avec un objectif x100.

[1] Prélever au moins 0,5 ml de sang dans un tube contenant de l'anticoagulant. Le meilleur anticoagulant est l'EDTA. En effet, le sang est préservé pendant plusieurs heures car l'EDTA possède des propriétés antimicrobiennes.

- [2] Mélanger le tube doucement pour s'assurer que le sang ne coagule pas.
- [3] Placer une petite goutte de sang sur le bord d'une lame dégraissée propre. Les lames de commerce sont dégraissées et propres, il est possible de les utiliser directement.
- [4] Placer une deuxième lame inclinée à 30° juste devant la goute de sang et étaler la goutte. Éviter d'utiliser une lamelle pour l'étalement car elle peut très facilement se casser. Ces parties sont composées d'une assise cellulaire (une seule couche de cellules sanguines) et peuvent être lues facilement (Figure 11).
- [5] Laisser sécher l'étalement.

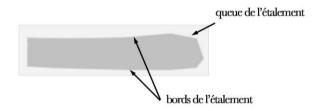



Figure 11 : Étalement de sang bien conçu (présence de bords et d'une queue)

- [6] Plonger la lame dans du méthanol pur pendant au moins 5 minutes (la lame peut être gardée dans le méthanol même pendant une nuit).
- [7] Plonger la lame dans une solution de Giemsa à 10% (mélanger 1 ml de Giemsa et 9 ml d'eau distillée tamponnée à un pH de 7,2) pendant 10 minutes.
- [8] Laver la lame à l'eau courante de robinet.

[9] Laisser sécher en plaçant la lame en position verticale.

#### Lecture de la lame

Lire la lame sous microscope optique à l'objectif x100 et à l'huile à immersion. Cette dernière doit être utilisée avec parcimonie car elle est cancérigène et très onéreuse<sup>64</sup>. Pour ce faire, utiliser des flacons compte-gouttes.

#### Conservation de la lame

- [1] Essuyer doucement la lame avec du papier essuie-tout.
- [2] Envelopper la lame dans du papier à l'abri de la poussière.

#### Encadré 8 : Comment interpréter les résultats en fonction du pathogène recherché ?

Comme toute technique, l'étalement de sang coloré au Giemsa est entaché d'erreurs, outre les erreurs dues aux mauvaises manipulations, à une mauvaise lecture de la lame, d'autres sont spécifiques :

**Babesia vogeli:** la parasitémie est faible et les parasites sont viscérotopes, donc un étalement négatif chez un chien fortement suspect de babésiose ne doit pas permettre d'écarter cette hypothèse. **Babesia bovis:** une parasitémie supérieure ou égale à 1 p. 1 000 permet de confirmer l'hypothèse diagnostique d'une babésiose.

**Theileria annulata:** pendant les phases précoces de l'infection, les parasites sont au stade schizonte qui est le stade le plus pathogène. Il faut dans ce cas, soit effectuer une ponction d'un nœud lymphatique, soit refaire le prélèvement 24 heures après.

-

<sup>&</sup>lt;sup>64</sup> 1 litre d'huile à immersion coûte au moins 520 dinars tunisiens (prix 2020).

**Theileria buffeli**: il faut faire la différence entre *T. annulata*, parasite pathogène chez les bovins et *T. buffeli* qui n'est pas pathogène. Cette dernière est transmise par *Haemaphysalis* spp., tique présente dans les régions humides et semi-arides de la Tunisie. *T. buffeli* présente en plus du piroplasme un voile et une barre.

Mycoplasma ovis et Bartonella spp.: ces pathogènes ont une position épi-érythrocytaires (ils sont fixés à la surface des érythrocytes), de ce fait, ils se détachent peu de temps après la mort cellulaire. Il faut confectionner l'étalement de sang « au chevet de l'animal », c'est-àdire juste après avoir prélevé le sang. Il faut éviter d'utiliser l'EDTA dans ce cas et lui préférer l'héparine. Étant un chélateur de calcium, l'EDTA accélère le détachement des bactéries de ces deux genres.

*Trypanosoma* spp.: les parasites sont très actifs, ils consomment alors assez rapidement les nutriments qui se trouvent dans le plasma. Les parasites meurent et dégénèrent très rapidement, ils deviennent de ce fait méconnaissables. L'étalement de sang doit être effectué dans la journée.

*Trypanosoma theileri* et *Trypanosoma melophagium*: chez les ovins et les bovins, il faut faire la différence entre *T. evansi*, parasite pathogène et les autres trypanosomes non pathogènes. Les bovins peuvent être infectés par *T. theileri* qui n'est pas pathogène et les ovins par *T. melophagium* également non pathogène.

Dans tous les cas : si les animaux sont traités, les parasites dégénèrent et changent de forme. Ils deviennent donc difficilement reconnaissables.

#### Encadré 9: Recommandations générales

- Si le prélèvement de sang est envoyé au laboratoire après un délai dépassant un jour, il est préférable d'effectuer l'étalement de sang et de le fixer avec du méthanol avant de l'envoyer.
- Afin de minimiser son évaporation, le méthanol doit être conservé au réfrigérateur (à +4°C). Le faire sortir du réfrigérateur environ 15 à 30 minutes avant son utilisation.
- Changer le méthanol et laver le récipient à chaque fois que la présence d'impuretés est remarquée.
- Afin d'éviter la pullulation d'algues, l'eau distillée doit être conservée au réfrigérateur (+4°C). Faire sortir le flacon d'eau du réfrigérateur environ 15 à 30 minutes avant son utilisation.
- Il ne faut jamais toucher la face de la lame sur laquelle sera déposé l'échantillon car il risque de ne pas se fixer.
- Ne diluer que la quantité nécessaire de Giemsa.
- Changer le Giemsa dilué à chaque fois que c'est nécessaire (formation d'un film à la surface du Giemsa).
- Ne pas manipuler le Giemsa avec un objet métallique, le colorant risque de se dissocier.

#### Prélèvement du suc ganglionnaire

Recherche des leishmanies et des schizontes de Theileria annulata.

- [1] Localiser un nœud lymphatique hypertrophié, qualifié de « ponctionnable ».
- [2] Bien désinfecter la peau avec de l'alcool 70°, si les poils sont trop longs, les couper avec une paire de ciseaux.
- [3] Bien tenir entre pouce et index le nœud lymphatique. Éviter de demander au propriétaire de vous aider dans la contention du nœud lymphatique, vous risquez de le piquer avec l'aiguille.
- [4] Introduire parallèlement à la main une seringue de 2 ml. Certains ouvrages recommandent l'utilisation d'une seringue en verre ou une aiguille de gros calibre, ce matériel est très traumatisant pour les nœuds lymphatiques et n'améliore pas les performances de cette technique. Il faut faire attention pour ne pas se piquer le doigt. En effet, lorsqu'on introduit une seringue, il y a une résistance au début qui est due à la peau et par la suite l'aiguille pénètre très facilement et très rapidement.
- [5] Aspirer le contenu du nœud lymphatique.
- [6] Retirer la seringue et aussitôt désinfecter la peau de l'animal.

# IVERMECTYL 1%

**IVERMECTINE** 





Optez our la référence!



# DECTROL POUR ON & EC 50



#### LE DUO DE CHOC!

contre les ectoparasites





- [7] Sur une lame porte-objet, pousser fortement sur le piston pour évacuer le contenu de la seringue. Il est possible de tenter de déposer le produit de la ponction à plusieurs reprises. Pour ce faire, retirer l'aiguille avant de tirer sur le piston de la seringue.
- [8] Étaler le produit de ponction très doucement avec l'aiguille.
- [9] Laisser sécher à l'air libre.
- [10] Colorer la lame au Giemsa.
- [11] Examiner la lame sous microscope à l'objectif x100 et à l'huile à immersion.

# Recherche des microfilaires chez les carnivores domestiques

Recherche des microfilaires sanguicoles chez les carnivores domestiques.

La prévalence de la dirofilariose est élevée en Tunisie 66, néanmoins et malgré son imporance, cette parasitose reste sous-estimée. Le praticien doit effectuer une recherche de ces parasites devant toute cardiopathie ou toute dermatite suintante des oreilles ou tout essouflement à l'effort. Pour augmenter les chances de retrouver les parasites, le sang doit être prélevé vers 20 heures.

#### Encadré 10 : Matériel nécessaire pour la recherche de microfilaires chez les carrivores

Seringues de 2 ml. Tubes EDTA.

-

<sup>&</sup>lt;sup>66</sup> **Filaire** (nom féminin, le masculin est correct mais n'est pas utilisé en parasitologie) : dérivé de *fil* avec le suffixe -*aire*.

<sup>&</sup>lt;sup>66</sup> La prévalence moléculaire de *Dirofilaria immitis* au nord de la Tunisia a été estimée à 14,5% par Rjeibi et al. 2016. Rjeibi M.R., Rouatbi M., Mabrouk M., Tabib I., Rekik M., Gharbi M. 2016. Molecular study of *Dirofilaria immitis* and *Dirofilaria repens* in dogs from Tunisia. *Transboundary and Emerging Diseases*. DOI:10.1111/tbed.12541.

Lames porte-objets.

Eau distillée neutre (pH = 7.2).

Colorant Giemsa.

Microscope optique avec un objectif x100.

Huile à immersion.

La recherche de ces parasites est relativement facile. Prélever au moins 1,5 ml de sang sur un tube EDTA et effectuer une série de tests diagnostics.

#### Examen d'une goutte fraiche

C'est un test d'orientation car il manque de sensibilité (la quantité de sang examinée est très réduite) et de spécificité (il est impossible de faire la distinction entre les différentes espèces de microfilaires). Si le test est positif, il faut passer à d'autres techniques.

- [1] Étaler une goutte de sang fraichement prélevée sur une lame.
- [2] Couvrir avec une lamelle couvre-objet.
- [3] Examiner la lame immédiatement sous microscope à l'objectif x40.

Si le prélèvement est positif, des vers ayant des mouvements serpentiformes sont observés.

#### Étalement de sang coloré au Giemsa

Cette technique permet d'estimer la filarémie et de procéder à une diagnose d'espèces.

[1] Déposer une goutte de sang prélevé sur un tube EDTA.

- [2] Étaler la goutte de sang.
- [3] Fixer au méthanol absolu.
- [4] Colorer la lame au Giemsa.
- [5] Examiner la lame à l'objectif x40.

#### Technique de Knott modifiée

La technique de Knott est la technique de référence pour le dépistage et le diagnostic de la dirofilariose canine.

- [1] Mélanger 1 ml de sang et 9 ml de formol à 2%. Le formol de commerce est à 40%, pour obtenir du formol à 2%, il faut donc diluer 1 ml de formol de commerce dans 19 ml d'eau distillée.
- [2] Bien mélanger pour lyser les érythrocytes.
- [3] Centrifuger à 1 500 tours/minutes pendant 5 minutes.
- [4] Jeter le surnageant.
- [5] Ajouter une goutte de bleue de méthylène à 0,1% et remuer le tube. La quantité de bleue de méthylène est à ajuster en fonction de la convenance du praticien.
- [6] Mélanger une deuxième fois, placer une goutte du mélange sur une lame porte-objet et couvrir avec une lamelle couvre-objet.
- [7] Examiner sous un microscope à l'objectif x40, les microfilaires apparaissent bleues.

#### Diagnose des espèces des microfilaires

Il est capital de faire la différence entre les microfilaires de *D. immitis* et *Acanthocheilonema reconditum* du fait d'une différence majeure entre les pouvoirs pathogènes des deux parasites.

Tableau 57 : Éléments de diagnose différentielle entre les deux espèces de microfilaires

| Caractère             | Dirofilaria immitis                   | Acanthocheilonema<br>reconditum |
|-----------------------|---------------------------------------|---------------------------------|
| Parasitémie           | Peut dépasser 2 x 10 <sup>4</sup> /ml | Généralement < 10³/ml           |
| Longueur              | > 300 microns                         | < 300 microns                   |
| Largeur               | 6,7 - 6,9 microns                     | 4,7 - 5,8 microns               |
| Extrémité             | Légèrement fuselée (cône              | Émoussée (hémisphère            |
| antérieure            | dans un cylindre)                     | dans un cylindre)               |
| Extrémité postérieure | Généralement droite                   | Généralement crochue            |

#### Encadré 11: Erreurs par défaut

Les faux négatifs sont possibles, le clinicien doit les prendre en compte lors de l'analyse des résultats. Ce manque de sensibilité peut avoir quatre origines :

**Très faible population parasitaire :** à l'origine d'une très faible parasitémie.

**Déséquilibre du sex-ratio :** il y a beaucoup plus de mâles que de femelles ou vice versa.

L'animal est encore dans la période prépatente : les filaires adultes ont provoqué un tableau clinique mais n'ont pas encore commencé à produire des larves. En effet, la période prépatente de ce parasite est très longue (6 mois en moyenne).

**État immunitaire de l'hôte :** si le système immunitaire exerce une forte pression sur les parasites, les femelles produisent peu ou pas de microfilaires.

# Recherche de Thelazia spp. chez les mammifères domestiques

Recherche de Thelazia spp. au niveau des yeux des mammifères domestiques.

La présence de microfilaires sur la cornée des mammifères domestiques et à l'origine d'une obstruction du canal nasolacrymal par la chassie<sup>67</sup> dans lequel se trouve les parasites. Lors de conjonctivite (notamment purulente), d'ulcères, de photophobie ou de moraxellose (chez les bovins), le clinicien doit penser à une filariose. La recherche des filaires adultes est facile, elles sont localisées dans le cul-de-sac conjonctival et peuvent être prélevées avec un écouvillon.

La recherche des microfilaires, se fait par lavage du canal nasolacrymal avec une solution isotonique de chlorure de sodium. Il faut collecter le produit de lavage et l'examiner sous microscope optique à l'objectif x 40.

\_

<sup>&</sup>lt;sup>67</sup> **Chassie** (nom féminin), en anglais *rheum*: sécretions produites par le nez, la bouche et les yeux lors du sommeil. Elles contiennent du mucus (au niveau des yeux, il s'agit de mucines produites par la cornée et la conjonctive), du mucus nasal, des cellules sanguines, des cellules cutanées et de la poussière. A différencier de **châssis** (nom masculin): sorte de cadre entourant ou supportant une surface (Dictionnaire Larousse).

Tableau 58 : Choix du type de prélèvement en fonction de l'agent pathogène recherché

| Pathogène    | Calque cutané<br>avec une lame | Calque avec un<br>film adhésif | Trichogramme | Brossage | Raclage<br>cutané | Digestion potassique |
|--------------|--------------------------------|--------------------------------|--------------|----------|-------------------|----------------------|
| Levures      |                                |                                |              |          |                   |                      |
| Bactéries    |                                |                                |              |          |                   |                      |
| Agents de    |                                |                                |              |          |                   |                      |
| teignes      |                                |                                |              |          |                   |                      |
| Puces        |                                |                                |              |          |                   |                      |
| Poux         |                                |                                |              |          |                   |                      |
| Cheyletiella |                                |                                |              |          |                   |                      |
| Sarcoptes    |                                |                                |              |          |                   |                      |
| Psoroptes    |                                |                                |              |          |                   |                      |
| Chorioptes   |                                |                                |              |          |                   |                      |
| Demodex      |                                |                                |              |          |                   |                      |

### Lutte contre les parasites des animaux domestiques

Les principes actifs ainsi que les spécialités d'antiparasitaires sont très nombreux, le choix du clinicien se base tout d'abord sur l'espèce parasitaire (d'où l'importance d'un diagnostic parasitologique précis), sur le stade en question (d'où l'importance de la connaissance du cycle biologique exact du parasite), l'hôte (âge, race, sexe, utilisation...), les bénéfices escomptés de cette action de lutte et les critères économiques (prix du médicament, temps d'attente, délais de retrait, coût de l'application)...

La lutte contre les parasites doit impérativement associer des mesures médicales et des mesures sanitaires : désinfection des locaux dans le cas des maladies à transmission fécale-orale, un crépissage et un lissage des murs dans le cas de la theilériose tropicale, un nettoyage puis une désinfection des locaux dans le cas des pulicoses...

Dans plusieurs cas, il est indiqué d'associer un traitement adjuvant raisonné (évitez d'utiliser systématiquement la vitamine C par exemple ou l'eau de javel !). Parfois, les traitements adjuvants sont indispensables (cas des acaricides et des antianémiques dans le cas d'infestations par des parasites hématophages).

La posologie doit être respectée car plusieurs de ces molécules sont toxiques pour les animaux, certaines ont un très faible index thérapeutique (cas du lévamisole). Ceci est surtout vrai lorsqu'il s'agit d'animaux de petit format (chats, chiens de petits formats, nouveaux animaux de compagnie...). En plus, le surdosage augmente le coût de la lutte et les sous-dosages donnnent des échecs thérapeutiques.

La majorité des molécules ont un temps d'attente pour la viande et un délai de retrait pour le lait et les œufs, il est impératif de respecter ces délais et ce, pour protéger la santé du consommateur. Abstraction faite de l'attitude de l'éleveur, le vétérinaire doit informer l'éleveur du temps d'attente et du délai de retrait.

# Principes généraux de la lutte contre les parasitoses des animaux

La lutte contre certaines parasitoses telles que les helminthoses digestives et respiratoires des ruminants, les tiques des bovins, les pulicoses (chez les carnivores et chez les ruminants) nécessitent une connaissance précise des conditions d'élevage, une visite de l'élevage doit être programmée, durant laquelle le praticien doit bien étudier les conditions d'élevage et les endroits les plus contaminés par les stades parasitaires (cette visite est appelée « excursion épidémiologique »). Au terme de cette visite, le praticien doit proposer un ensemble de mesures de lutte et non une seule action qui risque d'être inefficace. Cette approche est importante car plusieurs stades parasitaires libres :

- ...représentent une grande partie de la biomasse parasitaire. Par exemple, la biomasse parasitaire des puces dans le milieu extérieur représente environ 95% de la population et seuls 5% des parasites sont présents sur l'animal.
- ... sont des formes de résistance qui peuvent persister dans le milieu extérieur pendant plusieurs jours, voire plusieurs semaines. C'est le cas des ookystes coccidiens qui sont des formes de résistance peu sensibles aux différentes agressions du milieu extérieur.
- ... peuvent être facilement ciblés par les actions de lutte car biologiquement plus sensibles (pupes de gastérophiles et d'hypodermes...).
- ... sont regroupés dans un même endroit et pendant une même période (cas des tiques endophiles).

Il est important également d'aborder avec l'éleveur trois points importants :

- 1. Lui parler des stades libres des parasites et de leur importance, plus le praticien explique à l'éleveur plus ce dernier se rend compte que la biologie du parasite est compliquée et donc il sera beaucoup plus convaincu que le vétérinaire est un acteur incontournable.
- 2. Le pourquoi de chaque action de lutte.

3. Les limites de l'efficacité de chaque produit, par exemple l'eau de javel que plusieurs éleveurs considèrent comme la panacée.

## Acaricides et insecticides

Tableau 59 : Acaricides et insecticides ayant une autorisation de mise sur le marché en Tunisie

| Molécule (nom déposé)   | Posologie (mg/kg) | Voie d'administration | Spectre d'activité                        |
|-------------------------|-------------------|-----------------------|-------------------------------------------|
|                         | 0,2               | SC                    | Gales animales, phtirioses dues           |
|                         |                   |                       | aux anoploures                            |
|                         |                   |                       | L2 et L3 d' <i>Hypoderma</i> spp.,        |
| Ivermectine             |                   |                       | oestrose ovine, linguatulose canine       |
| (Ivomec, Ivermectyl 1%, | 0,2               | SC, 2x à 1 mois       | Mélophagose ovine                         |
| Cevamec, Syvamec,       | 0,4 - 0,5         | SC                    | Gales des carnivores (hors AMM)           |
| Cevamed, Vermec,        | 0,1 μg/kg         | ID                    | Lutte contre l'hypodermose                |
| Ovimec, Ivermed)        |                   | PO                    | Larves et adultes des strongles           |
| Ovinice, ivermed)       |                   |                       | digestifs et respiratoires                |
|                         |                   |                       | Adultes de <i>Trichuris</i>               |
|                         |                   |                       | Larves et adultes de <i>Strongyloides</i> |
|                         |                   |                       | Larves d' <i>Oestrus ovis</i>             |

| Molécule (nom déposé)                   | Posologie (mg/kg)                      | Voie d'administration  | Spectre d'activité                                                                                                                              |
|-----------------------------------------|----------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Ivermectine                             | 0,2                                    | PO                     | Gales, anoploures, gastérophilose                                                                                                               |
| (Eqvalan, Equimectyl)                   |                                        |                        |                                                                                                                                                 |
| Ivermectine +                           | 0,2                                    | PO                     | Gales, anoploures, gastérophilose,                                                                                                              |
| praziquantel                            |                                        |                        | Anoplocephala spp.                                                                                                                              |
| (Prazimec, Eqvalan Duo)                 |                                        |                        |                                                                                                                                                 |
|                                         | 2 mg/kg (BV)<br>(OV et CP hors<br>AMM) | SC                     | Larves d' <i>Hypoderma bovis</i> et<br>d' <i>Hypoderma lineatum</i> ; <i>Sarcoptes</i><br><i>scabiei</i> var. <i>bovis</i> ; <i>Linognathus</i> |
| Eprinomectine                           | / LIVIIVI)                             |                        | vituli, Haematopinus eurysternus,                                                                                                               |
| (Eprecis, Eprinex)                      |                                        |                        | Solenopotes capillatus,                                                                                                                         |
| (Epices, Epimex)                        |                                        |                        | Haematobia irritans                                                                                                                             |
|                                         |                                        |                        | Strongles digestifs et respiratoires                                                                                                            |
|                                         |                                        |                        | (Dictyocaulus viviparus)                                                                                                                        |
|                                         | 0,25 ‰ (BV)                            | Topique                | Gales animales, tiques, poux,                                                                                                                   |
|                                         | 0,50 ‰ (OV)                            |                        | mélophages                                                                                                                                      |
| Amitraz                                 |                                        |                        | Toxique pour les équidés                                                                                                                        |
| (Taktic, Néotraz,                       | 0,5 ‰                                  | Topique                | Démodécie canine (hors AMM)                                                                                                                     |
| Ectodex)                                | 0,25 ‰                                 | Topique (1x/s pdt. 8 à | Démodécie féline (hors AMM),                                                                                                                    |
|                                         |                                        | 16 semaines)           | chylétielloses                                                                                                                                  |
|                                         |                                        | Topique 1x/s           |                                                                                                                                                 |
| Amitraz                                 | Changer le collier                     | Collier acaricide      | Tiques du chien                                                                                                                                 |
| (Préventic)                             | tous les 4 mois                        |                        | Traitement d'appoint de la                                                                                                                      |
| , , , , , , , , , , , , , , , , , , , , |                                        |                        | démodécie canine                                                                                                                                |
| Deltaméthrine                           | 1 ppm                                  | Topique                | Tiques, puces et poux des ovins et                                                                                                              |

| Molécule (nom déposé)                                                                                                                                          | Posologie (mg/kg)                                                                                                                  | Voie d'administration              | Spectre d'activité                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|
| (Butox, Vectocid 50, Néo Gammatex, Dectrol EC 50, Deltamed, Dectrol Pour on (concentré à 7,5 p 1000), Dectrol EC 50 (concentré à 5%)), Galtox CE <sup>68</sup> |                                                                                                                                    |                                    | des bovins                                                                                                |
| Bicarbonate de sodium<br>Silices précipitées<br>( <b>Poux Stop</b> )                                                                                           | Été : pulvérisation<br>de 2 g/verre d'eau<br>Hiver : saupoudrer<br>l'oiseau et le nid<br>Sol : 10 à 20 g/m²<br>tous les 10 à 15 j. | Locale                             | Traitement des poux rouges des<br>oiseaux et des volailles                                                |
| Phoxim 50% (ByeMite)                                                                                                                                           | 2 000 ppm 2x à 7 j.                                                                                                                | Solution aqueuse                   | Traitement des poux rouges des oiseaux et des volailles                                                   |
| Deltaméthrine<br>(Scalibor)                                                                                                                                    | Tiques: 6 mois Phlébotomes: 5 mois Moustiques: 6 mois                                                                              | Collier                            | Chez le chien :<br>Infestations par les tiques<br>Effet répulsif sur les phlébotomes<br>et les moustiques |
| Deltaméthrine<br>( <b>Deltamed</b> )                                                                                                                           |                                                                                                                                    | Shampooing insecticide pour chiens | Lutte contre les puces et les tiques du chien                                                             |
| Cyperméthrine                                                                                                                                                  |                                                                                                                                    | Pour on                            | Lutte contre les tiques et les poux                                                                       |

\_

<sup>&</sup>lt;sup>68</sup> **EC :** émulsifiable et concentré.

| Molécule (nom déposé)    | Posologie (mg/kg)      | Voie d'administration        | Spectre d'activité                  |
|--------------------------|------------------------|------------------------------|-------------------------------------|
| (Neo-cypol 100 EC,       |                        |                              | chez les animaux de rente           |
| concentré à 10 %)        |                        |                              |                                     |
|                          | Chien: 7,5 mg/kg       | Pulvérisation                | Tiques                              |
| Fipronil                 | soit 3 ml/kg (poils    | <b>Puces</b> : 60 à 90 jours | Puces (tous les stades)             |
| (Frontline spray,        | longs: x2)             | Tiques: 30 jours             | Poux broyeurs                       |
| Fiprospray, Effipro,     | Chat: 7,5 mg/kg soit   | Pulvérisation                | Tiques                              |
| Effipro spot-on)         | 3 ml/kg (poils longs : | Puces: 40 jours              | Puces (tous les stades)             |
|                          | x2)                    | Tiques: 2 semaines           | Poux broyeurs                       |
| Fipronil + S-méthoprène  | Fipronil: 5 mg/kg      | Spot-on                      | Tiques                              |
| (Frontline Combo chien   | (S)-méthoprène : 6     | Puces: 8 semaines            | Puces                               |
| (S, M, L, XL))           | mg/kg                  | Tiques: 4 semaines           | Poux broyeurs                       |
|                          | Fipronil: 6,7 mg/kg    | Spot-on                      | Tiques                              |
|                          | (S)-méthoprène : 6     | Puces: 4 semaines            | Puces (tous les stades)             |
| Frontline + S-méthoprène | mg/kg                  | Prévention de                |                                     |
| (Frontline combo chat)   |                        | l'infestation : 6            |                                     |
|                          |                        | semaines                     |                                     |
|                          |                        | Tiques: 2 semaines           |                                     |
|                          | 2,7-6,9                | PO                           | Démodécie canine, pulicose,         |
| Afoxolaner               |                        | Puces: 5 semaines            | infestations par les tiques         |
| (Nexgard)                |                        | Tiques: 1 mois               |                                     |
|                          |                        | Démodécie : 1x/mois          |                                     |
| Dexaméthasone +          |                        | Gouttes à usage              | Traitement des otites externes du   |
| Marbofloxacine +         |                        | auriculaire                  | chien et du chat à germes           |
| Clotrimazole             |                        |                              | sensibles à la marbofloxacine et au |

| Molécule (nom déposé)                                                                          | Posologie (mg/kg) | Voie d'administration          | Spectre d'activité                                                                                                                                      |
|------------------------------------------------------------------------------------------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Aurizon)                                                                                      |                   |                                | clotrimazole                                                                                                                                            |
| Perméthrine + Nystatine +<br>Néomycine +<br>Triamcinolone <sup>®</sup><br>( <b>Oridermyl</b> ) | 1x/2 j.           | Pommade à usage<br>auriculaire | Traitement des otites externes du<br>chien et du chat à germes<br>sensibles à la néomycine et la<br>nystatine<br>Otacarioses à <i>Otodectes cynotis</i> |

Les spécilités indiquées en gras disposent d'une AMM tunisienne.

Il faut proscrire autant que faire se peut l'utilisation de la poudre de tabac (en arabe : naffa), du soufre (en arabe: bakhara), de l'huile de vidange (en arabe: zit mahrouk)... car ces substances ont une efficacité partielle et peuvent être toxiques pour l'animal. De plus, ces molécules seraient absorbées et passeraient dans les denrées alimentaires d'origines animales.

Il faut bien expliquer aux éleveurs le mode d'emploi des antiparasitaires. En effet, nous avons enregistré des cas d'intoxications par ces molécules chez des ovins (injection par la voie sous-cutanée d'albendazole) et chez un chien (friction avec de l'amitraz pure).

<sup>®</sup> La triamcinolone est un corticoïde qui a un effet anti-inflammatoire et antalgique.

Tableau 60: Antiparasitaires utilisables chez les abeilles

| Molécule                                      | Posologie (mg/kg)                              | Voie d'administration                                        | Spectre d'activité                                                                                                      |
|-----------------------------------------------|------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Thymol                                        | 50 g de gel 2x à 2 semaines                    | Gel à libération prolongée                                   | Chez l'abeille, lutte contre                                                                                            |
| (Apiguard)                                    | d'intervalle                                   | à déposer dans la ruche                                      | Varroa destructor                                                                                                       |
| Tau-Fluvalinate<br>( <b>Apistan</b> )         | 2 lanières à déposer pendant<br>6 à 8 semaines | Lanière à libération<br>prolongée à déposer dans<br>la ruche | Chez l'abeille, lutte contre<br>V. destructor et autres<br>insectes et acariens<br>parasites et ennemis de<br>l'abeille |
| Amitraz<br>(Apivar)                           | 1 g d'amitraz/ruche, soit 2<br>lanières/ruche  | Lanière à libération<br>prolongée à déposer dans<br>la ruche | Chez l'abeille, lutte contre<br>V. destructor                                                                           |
| Coumaphos<br>(Checkmite, Asuntol,<br>Périzin) |                                                | Lanière à libération<br>prolongée à déposer dans<br>la ruche | Chez l'abeille, lutte contre<br>V. destructor                                                                           |
| Fumagilline B<br>(Fumagil, Fumidil B)         | 23 mg de fumagilline/L de<br>sirop             | Orale                                                        | Chez l'abeille, lutte contre<br>la nosémose                                                                             |

L'amitraz en solution est commercialisé dans un excipient non adapté aux abeilles, il est de ce fait contre-indiqué de l'utiliser. De plus, les risques de surdosage sont élevés.

Il existe également des spécialités contrefaites qui avaient provoqué des mortalités chez les abeilles en Tunisie.

#### Acaricides sans autorisation de mise sur le marché tunisien

Il existe plusieurs spécialités non commercialisées en Tunisie, certaines d'entre-elles ont un intérêt évident tel que le **spectre** d'activité, une application plus facile, une toxicité plus réduite, une plus longue rémanence. Ce sont les quatre points forts des nouvelles molécules sur lesquelles travaillent les laboratoires pharmaceutiques (Tableau 61).

Tableau 61 : Antiparasitaires sans autorisation de mise sur le marché en Tunisie

| Molécule (nom<br>déposé)                                | Posologie (mg/kg)                                                                                                                               | Voie<br>d'administrat<br>ion | Spectre d'activité                                                                                                                                                                                          |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Imidaclopride + Moxidectine (Advocate, Advantage Multi) | 1x/mois<br>Chats:<br>Imidaclopride (10<br>mg/kg) + Moxidectine (1<br>mg/kg)<br>Chiens: Imidaclopride<br>(10 mg/kg) +<br>Moxidectine (2,5 mg/kg) | Spot-on<br>chien et chat     | Prévention de la dirofilariose, puces, poux, nématodes gastro-intestinaux, <i>Angiostrongylus vasorum</i> , gale sarcoptique, démodécie, autres acariens ( <i>Cheyletiella</i> , <i>Otodectes cynotis</i> ) |
| Imidaclopride +<br>Perméthrine<br>(Advantix)            | 1x/mois<br>Imidaclopride (10<br>mg/kg) + Perméthrine<br>(50 mg/kg)                                                                              | Spot-on<br>chien             | Action répulsive sur les phlébotomes, les<br>tiques et les moustiques. Lutte contre les<br>tiques, les phlébotomes, les moustiques et les<br>puces                                                          |
| Emodepside +<br>Praziquantel<br>(Profender)             | 1x/mois<br>Emodepside (3 mg/kg),<br>Praziquantel (12 mg/kg)                                                                                     | Spot-on chat                 | Lutte contre les cestodes et les nématodes du chat                                                                                                                                                          |
| Fluazuron<br>(Acatak PO 025)                            | 1,5 à 2,5 mg/kg                                                                                                                                 | Pour-on                      | Rhipicephalus spp. (Boophilus spp.) une utilisation régulière permet de lutter contre les autres espèces de tiques des bovins                                                                               |
| Fluazuron +<br>Ivermectine                              | Fluazuron (1,5 mg/kg) +<br>Ivermectine (0,5 mg/kg)                                                                                              | Pour-on                      | Rhipicephalus spp. (Boophilus spp.),<br>Haemonchus placei, Trichostrongylus axei, T.                                                                                                                        |

| Molécule (nom<br>déposé)                                                              | Posologie (mg/kg)                                                      | Voie<br>d'administrat<br>ion | Spectre d'activité                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Acatak Duostar)                                                                      |                                                                        |                              | colubriformis, Cooperia spp., Oesophagostomum spp. LA de Nematodirus spp., adultes de Strongyloides papillosus, Trichuris spp. et Thelazia spp., Linognathus vituli, Haematopinus eurysternus, Solenopotes capillatus, Bovicola bovis, Sarcoptes scabiei, Chorioptes bovis, Haematobia irritans |
| Fipronil + (S)-<br>methoprene +<br>pyriproxyfen<br>(Frontline Gold,<br>chien ou chat) | Fipronil (9,80%); (s)-<br>methoprene (11,80%),<br>pyriproxyfen (0,25%) | Spot-on                      | Tiques, tous les stades de puces, poux<br>broyeurs                                                                                                                                                                                                                                              |
| Afoxolaner +<br>milbemycin oxime<br>(NexGard Spectra)                                 | Afoxolaner (2.5 mg/kg)<br>+ Milbemycin oxime<br>(0,5 mg/kg)            | Comprimés                    | Puces, tiques, <i>Dirofilaria immitis</i> , nématodes intestinaux ( <i>Toxocara canis</i> , <i>Toxascaris leonina</i> , <i>Ancylostoma caninum</i> , <i>Trichuris vulpis</i> )                                                                                                                  |
| Milbemycine Oxime<br>+ Lufénuron<br>(Sentinel)                                        | Milbemycine oxime (0,5<br>mg/kg) + Lufénuron (10<br>mg/kg)             | PO                           | Lutte contre les puces et prévention contre<br>Dirofilaria immitis  Lutte contre Toxocara canis, Toxascaris<br>leonina, Ancylostoma caninum et Trichuris<br>vulpis                                                                                                                              |

| Molécule (nom<br>déposé)                                                                | Posologie (mg/kg) | Voie<br>d'administrat<br>ion | Spectre d'activité                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------|-------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nystatine +<br>Thiostrepton +<br>Néomycine +<br>Triamcinolone<br>acétonide<br>(Panolog) |                   | Pommade                      | Otites externes aiguës et chroniques (compliquées par <i>Malassezia</i> spp. et <i>Candida albicans</i> ), infection des glandes anales chez les chiens et les chats, kystes interdigitaux, dermatite (dont dermatite eczémateuse, dermatite de contact et dermatite séborrhéique) |
| Imidaclopride +<br>Pyriproxyfène<br>(Advantage II)                                      |                   | Spot-on<br>1x/mois           | Lutte contre tous les stades de puces chez le<br>chien et le chat<br>Lutte contre les poux                                                                                                                                                                                         |
| Imidaclopride + Perméthrine + Pyriproxyfen (K9 Advantix II)                             |                   | Spot-on<br>1x/mois           | Effet répulsif et curatif contre les puces, les poux, les moustiques et les tiques  Contre-indiqué chez le chat                                                                                                                                                                    |
| Imidaclopride +<br>Moxidectine<br>(Advantage Multi<br>chien)                            |                   | Spot-on<br>1x/mois           | Prévention de <i>Dirofilaria immitis</i> , lutte contre<br>les puces, <i>Ancylostoma caninum, Uncinaria</i><br>stenocephala, <i>Toxocara canis, Toxascaris</i><br>leonina, <i>Trichuris vulpis</i>                                                                                 |
| Imidaclopride +<br>Moxidectine<br>(Advantage Multi<br>chat)                             |                   | Spot-on<br>1x/mois           | Lutte contre les puces, Ancylostoma tubaeforme, Toxocara cati, Otodectes cynotis                                                                                                                                                                                                   |

| Molécule (nom<br>déposé)                                                  | Posologie (mg/kg) | Voie<br>d'administrat<br>ion | Spectre d'activité                                                                                                                                                                        |
|---------------------------------------------------------------------------|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F/ Néonicotinoïdes<br>Nitenpyram<br>(Capstar)                             | 1 mg/kg           | PO                           | Lutte contre les puces chez le chien et le chat avec un fort effet <i>Knock down</i>                                                                                                      |
| F/Milbemycine Milbemycine oxime (Interceptor)                             | 0,5 mg/kg         | PO                           | Prévention de <i>Dirofilaria immitis</i> Lutte contre <i>Toxocara canis, T. leonina,</i> Ancylostoma caninum, Trichuris vulpis, Angiostrongylus vasorum, Demodex canis, Sarcoptes scabiei |
| F/Phénylpyrazolés Pyriprole (Prac-Tic)                                    | 12,5 mg/kg        | Spot-on<br>1x/mois           | Lutte contre les tiques et les puces chez le<br>chien et le chat                                                                                                                          |
| F/ Inhibiteur de<br>développent des<br>insectes<br>Lufénuron<br>(Program) | 10 mg/kg          | PO<br>1x/mois                | Lutte contre tous les stades des puces                                                                                                                                                    |

## Calcul des dilutions des pesticides<sup>70</sup>

Le calcul des dilutions des pesticides est très important, l'utilisation de solutions trop diluées donne des échecs de traitements et favorise le développement de résistances. Par contre, l'utilisation de solutions très concentrées risque d'intoxiquer l'animal traité. Ceci est surtout vrai lors d'application de pesticides chez les animaux de petits formats ou sur de grands effectifs d'animaux.

Tableau 62: Calcul des concentrations des pesticides

| Sigle                           | Désignation                           | Où la trouver ?                              | Exemple           |
|---------------------------------|---------------------------------------|----------------------------------------------|-------------------|
| $C_i$ (concentration            | Concentration du                      | Indiquée sur le                              | Acaricide à       |
| initiale)                       | pesticide                             | flacon                                       | 125 g/L           |
| $\mathbf{V_i}$ (volume initial) | Volume à<br>prélever                  | A chercher                                   | -                 |
| $\mathbf{C_f}$ (concentration   | Concentration de                      | Cours, livres,                               | 0,5 p. 1 000      |
| finale)                         | travail                               | articles, internet                           | (0,0005)          |
| $\mathbf{V_f}$ (volume final)   | Volume à<br>appliquer sur<br>l'animal | CN: 0,25 à 1 L<br>Veaux: 4 L<br>BV - CV: 7 L | 1 L (1 000<br>ml) |

186

<sup>&</sup>lt;sup>70</sup> **Pesticide :** terme générique utilisé dans ce mémento pour désigner aussi bien les acaricides que les insecticides.

#### Exemple

On souhaite appliquer un pesticide qui est commercialisé dilué au 1/8<sup>ème</sup>, c'est-à-dire qu'un litre du produit contient 125 grammes du principe actif (c'est la concentration initiale : C<sub>i</sub>).

Le produit sera utilisé à la concentration finale de 0,5 p. 1 000, cette concentration est une donnée. Elle varie en fonction de la molécule utilisée, de l'espèce animale et du parasite ciblé (c'est la concentration finale : C<sub>i</sub>).

Il nous faut 1 L de la solution finale, cette quantité ne dépend que du format de l'animal (c'est le volume final : V<sub>i</sub>).

La question est la suivante : quelle est la quantité à prélever du flacon qui sera ajouté à l'eau? C'est la V<sub>i</sub> qui est donc l'inconnue.

Appliquons la maxime de Lavoisier « rien ne se perd, rien ne se crée, tout se transforme »

 $Donc: C_i V_i = C_f V_f d'où V_i = C_f V_f/C_i$ 

#### Application numérique

 $V_i = 0,0005x1 000/0,125 = 4$ . Donc il faut jouter 4 ml du pesticide à 1 L d'eau (pour être rigoureux à 996 ml d'eau! mais la différence est minime).

## Précautions à prendre lors de l'utilisation de pesticides chez les animaux

L'utilisation des pesticides doit être entourée de précautions à cause des risques encourus par l'utilisateur, l'animal traité, les animaux sauvages et le consommateur. La rémanence des insecticides fait que leur utilisation est nocive aussi pour l'environnement.

En tant que professionnel de la santé animale, le vétérinaire doit éviter autant que faire se peut le contact avec les pesticides du fait des risques d'intoxications chroniques.

### Manutention<sup>71</sup> des pesticides

- Les pesticides doivent être stockés dans des récipients étanches, à l'abri de la lumière, de l'air et de l'eau (et même de l'humidité).
- Garder le pesticide dans son emballage d'origine, ou inscrire sur le récipient, en caractères lisibles : la dénomination commune internationale (principe actif)

<sup>71</sup> **Manutention :** action de manipuler, de déplacer des marchandises en vue de l'enimagasinage, de l'expédition, de la vente, local réservé à ces opérations (Dictionnaire Larousse).

188

- et son antidote. Sur une bande rouge, il sera inscrit POISON.
- Ils doivent être stockés hors de la portée des enfants et des animaux.
- Éviter de stocker les pesticides avec les aliments ou les matières premières utilisées pour la préparation des aliments (additifs...).
- Éviter de stocker les pesticides dans des locaux où des personnes peuvent séjourner pendant longtemps (chambres, bureaux, salles de consultations, véhicules...).

#### Précautions à prendre par l'opérateur

- Ne jamais utiliser un pesticide de provenance douteuse (sans AMM ou non homologué).
- Ne jamais utiliser un produit non étiqueté ou non identifié.
- Opérer dans un endroit aéré.
- Porter des gants et un masque.
- Ne pas boire, manger ou fumer durant l'utilisation d'un pesticide (pour prévenir son ingestion ou son inhalation).

#### En cas d'intoxication

- Dans le cas où le pesticide s'est versé sur le corps ou même sur les vêtements, il est impératif de se laver à l'eau courante à grande eau et de se changer.
- Évacuer le sujet intoxiqué vers un endroit aéré.
- Se présenter **le plus rapidement possible** à un médecin traitant ou à un centre antipoison. Il est impératif d'indiquer au médecin traitant le principe actif du pesticide ou au moins la

famille à laquelle il appartient ou à défaut lui présenter l'emballage d'origine.

- Éviter de faire boire du lait ou de l'huile à la personne (ou à l'animal) intoxiquée, les pesticides sont liposolubles, la consommation de ces aliments augmente donc leur absorption par le corps!

Contacter le centre antipoison au 71 245 075 ou au 71 33 70 00 ou à défaut, la protection civile au 198 ou le SAMU au 190°.

#### Précautions à prendre pour les animaux traités

- Bien abreuver les animaux avant l'application du pesticide avec de l'eau fraiche.
- Si le produit est utilisé hors AMM, la responsabilité du vétérinaire est engagée, or le produit peut être toxique et/ou irritant pour l'Homme et les animaux.
- Veiller au respect de la concentration exacte du produit.
- Bien calculer les dilutions pour les animaux de petit format (risque élevé d'intoxication) et sur de grands effectifs (risque de sous-dosage ou d'intoxication sur un grand nombre d'animaux).
- Placer les animaux dans un endroit ventilé, ombragé et éviter d'appliquer ou de manipuler les pesticides durant les heures chaudes de la journée, préférer son application en fin de journée pour éviter l'absorption cutanée du produit ou son inhalation.
- Ne pas placer les animaux dans un endroit ensoleillé ou non aéré après l'application du pesticide.

<sup>&</sup>lt;sup>72</sup> Ces numéros de téléphone ne sont valables qu'en Tunisie.

#### Précautions pour le consommateur

L'observation du temps d'attente et du délai de retrait est impérative au risque de voir se déclarer des cas d'intoxication (toxicité aiguë) ou une bioaccumulation des pesticides dans le corps du consommateur qui n'est pas détectable (toxicité chronique).

#### Précautions pour l'environnement

Quelque soit le pesticide, son utilisation est nocive pour l'environnement : rémanence, actions sur la biodiversité (diminution de l'eclosabilité des oeufs des rapaces, diminution de la biomasse d'insectes et notamment les insectes pollinisateurs et coprophages et les nématodes du sol).

- [1] Ne pas verser les pesticides dans les plans d'eau (rivières, lacs, étangs...).
- [2] Rincer le flacon vide trois fois et ne jamais l'utiliser pour une autre fin.
- [3] Le produit restant doit être versé loin des points d'eau, l'endroit ne doit pas être utilisé pendant au moins 3 semaines.

#### Développement de résistance vis-à-vis des pesticides

Certaines espèces de tiques (notamment celles appartenant au genre *Rhipicephalus* (*Boophilus*)) ont développé une résistance vis-à-vis de plusieurs acaricides et ce, suite à leurs utilisation massive en Amérique Latine et en Australie. Cette résistance risque également de se développer chez d'autres espèces de tiques et dans d'autres régions du monde. II

convient alors d'utiliser les pesticides de manière rationnelle (concentrations exactes, lorsque leur utilisation est indiquée), il faut également changer les pesticides tous les ans ou tous les deux ans en utilisant des molécules qui appartiennent à des familles différentes.





# Aurizon®



Unis pour les meilleurs résultats dans le traitement des otites externes



# **Piroplasmicides**

Tableau 63: Principaux piroplasmicides utilisables chez les animaux domestiques

| Molécule            | Posologie (mg/kg)         | Voie          | Spectre d'activité                    |
|---------------------|---------------------------|---------------|---------------------------------------|
| Buparvaquone        | 2,5 mg/kg                 | IM            | Theilériose tropicale bovine          |
| (Teldex, Butacof 5, | Renouveler l'injection si |               |                                       |
| Butalex)            | nécessaire                |               |                                       |
| Parvaquone          | 20 mg/kg à renouveler     | IM            | Theilériose tropicale bovine          |
| (Parvexon, Clexon)  | après 48 heures           |               |                                       |
| Phénamidine         | 15 mg/kg                  | SC            | Traitement de la babésiose canine     |
| (Oxopirvédine)      |                           |               |                                       |
|                     | 3 à 4 mg/kg               | CN : IM       | Babésioses du chien et des ruminants  |
| Pentamidine         | (surra : 3 mg 3x à 3 j.)  | RN : IV lente | Surra                                 |
| (Lomidine)          |                           |               | Pas de temps d'attente ni de temps de |
|                     |                           |               | retrait                               |

| Molécule                                     | Posologie (mg/kg) | Voie                                                | Spectre d'activité                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------------------|-------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Diminazène<br>(Bérénil, Veriben)             | 3,5 mg/kg         | IM<br>BV, OV, CP,<br>CV, CN <sup>73</sup>           | Trypanosoma congolense, T. vivax, T.<br>brucei, Babesia bovis, B. bigemina, B. ovis,<br>B. motasi, B. canis, Theileria annulata                                                                                                                                                                                                                                                           |  |
| Imidocarbe <sup>74</sup> ( <b>Carbesia</b> ) | Cf. Tableau 64    | BV <sup>33</sup> : SC, IM<br>CV : IM<br>CN : SC, IM | Prévention et traitement des babésioses bovines ( <i>Babesia bovis, B. bigemina</i> et <i>B. divergens</i> ), équines ( <i>B. caballi</i> ) et canines ( <i>B. vogeli</i> ) Prévention et traitement de la theilériose équine ( <i>T. equi</i> ) Traitement de l'anaplasmose bovine à <i>Anaplasma marginale</i> Traitement de l'hépatozoonose canine en association avec la tétracycline |  |

-

<sup>&</sup>lt;sup>78</sup> N'injecter le produit qu'après avoir pesé le chien, il y a un risque d'intoxication si la posologie est dépassée ou si le produit est réinjecté au chien.

<sup>&</sup>lt;sup>74</sup> L'index thérapeutique de l'imidocarbe chez les caprins est faible, il faut peser l'animal pour lui administrer la dose exacte.

<sup>&</sup>lt;sup>75</sup> Ne pas dépasser 5 ml du produit par point d'injection chez les grands animaux.

Tableau 64: Protocoles de lutte contre les babésioses

| Espèce       | Curatif (mg/kg)           | Stérilisant (mg/kg)             | Prophylaxie (mg/kg) |
|--------------|---------------------------|---------------------------------|---------------------|
| Bovins       | 1 ml/100 kg               | 2 ml/100 kg                     | 2,5 ml/100 kg       |
| DOVINS       | (1,2  mg/kg)              | (2,4  mg/kg)                    | (3 mg/kg)           |
| Équidés      | 2 ml/100 kg en 4 points   | 2x2 ml/100 kg à 72 heures       | 2 ml/100 kg         |
| (B. caballi) | d'injection               | d'intervalle                    | (2,4  mg/kg)        |
| (Б. сараш)   | (2,4  mg/kg)              | (2,4  mg/kg)                    |                     |
|              | 2x2 ml/100 kg à 24 heures | 4x4 ml/100 kg à 72 heures       | 2 ml/100 kg         |
| Équidés      | d'intervalle              | d'intervalle                    | (2,4  mg/kg)        |
| -            | (2,4 mg/kg)               | (4,8 mg/kg)                     |                     |
| (T. equi)    |                           | Contre-indiqué chez les ânes et |                     |
|              |                           | les mulets                      |                     |
| Chien        | 0,25 ml/10 kg             |                                 | 0,5 ml/10 kg        |
| Cilicii      | (3 à 5 mg/kg)             |                                 | (6 mg/kg)           |

## Autres anti-protozoaires

Tableau 65: Principaux anti-coccidiens \*

| Molécule<br>(nom déposé)                                                                                                                                    | Posologie (mg/kg)                                                                                                                                        | Spectre d'activité                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Amprolium (Amprolium Liquide, Aviprol 12%, Coccimed 12%, Cocciprol liquide, Cocciprol poudre orale, Emerium 12, Emerium 20% (poudre), Finicox, Aviprol 12%) | BV: 10 à 20 pdt. 4 à 5 j.<br>OV, CP: 50 mg/kg/j.<br>VO: 125 ppm pdt. 5 à 7 j.                                                                            | Traitement et prévention des<br>coccidioses chez les bovins,<br>ovins, caprins et volailles |
| Sulfaquinoxaline sodique, Pyriméthamine (Quinoxal)                                                                                                          | Sulfaquinoxaline sodique : 50 mg/L<br>Pyriméthamine (base) : 10 mg/L<br>Volailles : 2 cures de 2 j. espacées<br>d'un repos de 2 j.<br>Lapins : 4 j./mois | Coccidioses intestinales et<br>caecales des volailles et des<br>lapins                      |

| Molécule<br>(nom déposé)                                                 | Posologie (mg/kg)                                                                                                                                                                                 | Spectre d'activité                                                                                                                       |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Sulfadimidine sodique +                                                  | 1 g de poudre/2 L d'eau de boisson                                                                                                                                                                | Coccidioses du poulet et du                                                                                                              |
| Diaveridine                                                              | 5 j. de suite, ou 2 x 3 j. avec 2 j. d'arrêt                                                                                                                                                      | canard                                                                                                                                   |
| (Vetacox)                                                                |                                                                                                                                                                                                   |                                                                                                                                          |
| Trimethoprime /Sulfadiazine (TMP Sulfa)                                  | Veaux et agneaux : 12,5 mg<br>sulfadiazine + 2,5 mg<br>triméthoprime/kg. 2x/j. pdt. 4 à 7 j.<br>Porcins, lapins et volailles : 25 mg<br>sulfadiazine et 5 mg<br>triméthoprime/kg/j. pdt. 4 à 7 j. | Coccidioses du veau, de<br>l'agneau, des porcins, du lapin et<br>des volailles                                                           |
| Sulfadimidine + Sulfadiméthoxine + Diavéridine + Nicotinamide +Ménadione | 1 g/l/j. pdt. 3 à 5 j.                                                                                                                                                                            | Traitement et prévention des coccidioses des volailles (poules, pintades, dindes)                                                        |
| (Coccivit)                                                               |                                                                                                                                                                                                   | ,                                                                                                                                        |
| Sulfadiméthoxine + Trimethoprime (Sultramyl, Sulfamax)                   |                                                                                                                                                                                                   | Coccidioses des volailles                                                                                                                |
| Toltrazuril (Cevazuril 2,5%, Timcox)                                     | 7 mg/kg/j. pdt. 2 j.                                                                                                                                                                              | Prévention et traitement des coccidioses des volailles (Eimeria acervulina, E. tenella, E. necatrix, E. brunetti, E. maxima et E. mitis) |

<sup>\*</sup> Toutes ces molécules sont administrées per os

Tableau 66: Principaux anti-leishmaniens

| Molécule<br>(nom déposé)                        | Posologie (mg/kg)                                        | Voie<br>d'administration | Spectre d'activité                                                                                                                                                             |
|-------------------------------------------------|----------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Antimoniate de<br>méglumine<br>(Glucantime)     | 100 mg, 1x/2 j. pdt. 30 j.                               | IV lente, IM<br>profonde | Leishmaniose canine                                                                                                                                                            |
| Allopurinol (Purinol 100, Purinol 300, Zyloric) | 30 mg pdt. 1 à 3 mois puis<br>20 une semaine/mois, à vie | PO                       | Hypo-urécimiant : intervient dans le<br>métabolisme des bases puriques<br>(Adénine et Guanine)<br>Leishmanistatique, utilisé en association<br>avec l'antimoniate de méglumine |
| Miltéfosine<br>(Miltéforan)                     | 2 mg/kg pdt. 28 j.                                       | PO                       | Alkyl-phospholipide : traitement de la leishmaniose canine                                                                                                                     |

Tableau 67: Autres antiprotozoaires

| Molécule (nom déposé)      | Posologie (mg/kg)           | Voie d'administration | Spectre d'activité        |
|----------------------------|-----------------------------|-----------------------|---------------------------|
| Mélarsomine                | 0,25 mg/kg                  | IM                    | Trypanosomiase à          |
| (Cymelarsan)               |                             |                       | Trypanosoma evansi        |
| Ponazuril                  | 5 mg/kg                     | Pate orale            | Lutte contre Sarcocystis  |
| (Marquis)                  | 1x/j. pdt. 28 j.            |                       | neurona                   |
| Oxytetracycline            | 22 mg/kg en 3x pdt. 14 j.   | PO                    | Hépatozoonose canine en   |
| (Oxytetracycline 250)      |                             |                       | association avec          |
| (Oxytetracycline 250)      |                             |                       | l'imidocarbe              |
|                            | 0,1 mg/kg pdt. 7 j.         | PO                    | Prévention de la          |
| Halofuginone               |                             |                       | cryptosporidiose des      |
| (Halocur)                  |                             |                       | ruminants et réduction de |
| (Halocul)                  |                             |                       | la diarrhée chez des      |
|                            |                             |                       | animaux atteints          |
| Paromomycine               | 25 - 50 mg/kg/j. pdt. 3 à 5 | PO                    | Traitement de la          |
| (Gabbrovet)                | j.                          |                       | cryptosporidiose du veau  |
|                            | CNV: 50 mg en deux          | Comprimés pelliculés  | Giardiose des carnivores  |
| Métronidazole              | prises pdt. 5 à 6 j.        |                       | et des équidés            |
| (Flagyl 250, Metrogyl 250) | CV: 15 mg en 3 prises       |                       |                           |
|                            | pdt. 10 j.                  |                       |                           |

Les spécialités disposant d'une AMM tunisienne ont été indiquées en gras.

## Anthelminthiques<sup>6</sup>

Plusieurs spécialités anthelminthiques sont disponibles en Tunisie. Le prix et la présentation varient d'une spécialité à une autre.

Il est important d'observer certaines précautions lors de leur utilisation : les benzimidazolés sont contre-indiqués chez les femelles gestantes (pendant le premier tiers de gestation) du fait d'un risque de tératogenèse, ils sont également à l'origine d'accidents de fermentation des fromages.

Le lévamisole à un très faible index thérapeutique, la dose doit être ajustée en fonction du poids de l'animal.

-

<sup>&</sup>lt;sup>76</sup> Les tableaux d'anthelminthiques présentés ci-dessous ont été empruntés de Bussiéras et Chermette, 1995. Abrégé de parasitologie vétérinaire : Helminthologie vétérinaire. 299 pp.

Tableau 68 : Posologie et voies d'administration des anthelminthiques chez les animaux

| DCI                                      | Voie      | Posologie<br>(mg/kg) | Noms déposés                                                                                                          |  |
|------------------------------------------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Benzimidazolés                           |           |                      |                                                                                                                       |  |
| Albendazole                              | РО        | 5-10                 | Sovalben, Valbazen bolus, Zentel<br>(HO), Z-zole (HO), Anthelben<br>2,5%, Dalben 1,9, Albenzole,<br>Albenzol, Albazol |  |
| Fenbendazole                             | РО        | 7,5                  | Fenzol 2,5%, Fenzol 10%, Panacur (10%, et pate), Vermicur 2,5%, Vermicur Bolus, Para-Fen 2,5%, Parazol Bolus, Parazol |  |
| Flubendazole                             | РО        | 1,43<br>(Poules)     | Flubelnol 5%, Fluvermal (HO)                                                                                          |  |
| Mébendazole                              | РО        | 10                   | Vermox (HO), Telmin KH (CN),<br>Telmin (CV), Multispec (PR)                                                           |  |
| Oxfendazole                              | РО        | 5                    | Oxyfen, Oxyver (CN), Synanthic,<br>Repidose, Dolthène (CN)                                                            |  |
| Triclabendazole                          | PO        | 10 (OV)              | Triclazole, Fasinex                                                                                                   |  |
| Triciabendazoie                          | PO        | 12 (BV)              | Fasinex                                                                                                               |  |
| Imidazothiazolés                         |           |                      |                                                                                                                       |  |
|                                          | РО        | 5-7,5                | <b>Biaminthic, Thelmizole,</b> Anthelsol, Paglisol                                                                    |  |
| Lévamisole                               | IM,<br>SC | 3-5                  | Lévisole, Némisol, Niratil, Ripercol,<br>Thelmizole                                                                   |  |
|                                          | ТС        | 10                   | Citarin L, Lévisole, Niratil,<br>Pagliderm, Ripercol                                                                  |  |
| Sulfamides                               |           |                      |                                                                                                                       |  |
| Clamanlan                                | SC        | 2                    | Curatrem                                                                                                              |  |
| Clorsulon                                | РО        | 7                    |                                                                                                                       |  |
| Produits de fermentation (antibiotiques) |           |                      |                                                                                                                       |  |
| Doramectine                              | SC        | 0,2 (BV)             | Dectomax                                                                                                              |  |

| DCI                        | Voie      | Posologie<br>(mg/kg) | Noms déposés                                                                        |  |
|----------------------------|-----------|----------------------|-------------------------------------------------------------------------------------|--|
| Eprinomectine              | SC        | 0,2 (BV)             | Eprecis (SC) <sup>77</sup> , Eprinex (pour-on)                                      |  |
| Ivermectine                | sc        | 0,2                  | Ivomec, Ivermectyl, Oramec,<br>Syvamec, Cevamec, Vermec,<br>Evimec, Ivermed, Ovimec |  |
|                            | PO        | 0,2 (CV)             | Eqvalan, Equimectyl                                                                 |  |
|                            | PO        | 0,5 (CN)             | Cardomec, Heartgard                                                                 |  |
| Moxidectine                | SC        | 0,2 (BV)             | Cydectine, Equest                                                                   |  |
| Hologéno-phénols           |           |                      |                                                                                     |  |
| Closantel                  | SC        | 5 (BV)               | Flukiver                                                                            |  |
| Closamei                   | PO        | 10                   | Seponver, Flukiver, Cevanthel                                                       |  |
| Niclosamide                | РО        | 50-100               | Yomesane, Téniastop, Ténicure,<br>trédémine (HO)                                    |  |
| Nitroxinil                 | SC        | 10                   | Dovenix                                                                             |  |
| Oxyclozanide               | РО        | 10 (BV),<br>15 (OV)  | Zanil, <b>Douvistome</b>                                                            |  |
| Dérivés amino-acétor       | itrile    |                      |                                                                                     |  |
| Monepantel                 | PO        | 2,5 (OV)             | Zolvix                                                                              |  |
| Divers                     |           |                      |                                                                                     |  |
| Mélarsomine                | PO        |                      | Immiticide (CN)                                                                     |  |
| Nitroscanate               | РО        | 50 (CN)              | Lopatol, Scanil                                                                     |  |
| Pipérazine (adipate, etc.) | РО        | 100-200              | <b>Vermidog</b> , Ascapipérazine,<br>Plurivers                                      |  |
| Praziquantel               | PO,<br>SC | 5 (CN)               | Droncit, <b>Biltricide</b> ( <b>HO</b> , forme hospitalière)                        |  |

Les spécialités disposant d'une AMM tunisienne ont été indiquées en gras.

-

<sup>&</sup>lt;sup>77</sup> Peut être administrée, hors AMM, aux petits ruminants.

Tableau 69: Associations d'anthelminthiques chez les animaux domestiques

| Molécules                                                                                                                                           | Voie<br>d'administration<br>(espèce) | Noms déposés                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------|
| Ivermectine + Clorsulon                                                                                                                             | SC (BV)                              | Ivomec-D, Ivermectyl-F Ivermed Plus        |
| Closantel (10 mg/kg): Haemonchus contortus, Fasciola hepatica et Oestrus ovis Abamectine (0,2 mg/kg): strongles digestitifs et Dictyocaulus filaria | PO (OV)                              | Clomectine                                 |
| Ivermectine + Praziquantel                                                                                                                          | PO (CV)                              | Eqvalan Duo,<br>Prazimec                   |
| Ivermectine + Pyrantel                                                                                                                              | PO (CN)                              | Heartgard plus                             |
| Oxantel + Praziquantel +<br>Pyrantel                                                                                                                | PO (CN)                              | Dolpac 10, Dolpac 25                       |
| Albendazole + Se + Co + Zn                                                                                                                          | PO (RN)                              | Dalben Oligos 2,5%                         |
| Lévamisole + Niclosamide                                                                                                                            | PO (CN, CT)                          | Biaverm                                    |
| Emodepside + Praziquantel                                                                                                                           | Spot-on (CT)                         | Profender                                  |
| Lévamisole + Triclabendazole                                                                                                                        | PO (BV, OV)                          | Combinex, Endex,<br>Parsifal, Soforen Plus |
| Abamectine + Triclabendazole                                                                                                                        | Pour-on (BV, OV)                     | Fasimec                                    |
| Milbemycine + Praziquantel                                                                                                                          | PO (CN)                              | Milbemax                                   |
| Praziquantel + Pamoate de<br>pyrantel + Febantel                                                                                                    | PO (CN)                              | Drontal plus                               |

Les spécialités disposant d'une AMM tunisienne ont été indiquées en gras.

Tableau 70: Anthelminthiques utilisés chez les bovins

|                    | Strongl | . digest.           |                |               |           |           |          | Fä      | ısc.      |              |          |                        |
|--------------------|---------|---------------------|----------------|---------------|-----------|-----------|----------|---------|-----------|--------------|----------|------------------------|
| Molécule           | Adultes | Larves<br>hypobiose | Strongl. resp. | Strongyloides | Ascarides | Trichures | Cestodes | Adultes | Immatures | Dicrocoelium | Нуродета | Sarcoptes<br>Psoroptes |
| Thiabendazole      |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Oxibendazole       |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Fenbendazole       |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Oxfendazole        |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Albendazole        |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Triclabendazole    |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Thiophanate        |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Fébantel           |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Nétobimin          |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Lévamisole         |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Pyrantel, tartrate |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Nitroxinil         |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Oxyclozanide       |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Bithionoloxide     |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Closantel          |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Niclosamide        |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Ivermectine        |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Eprinometine       |         |                     |                |               |           |           |          |         |           |              |          |                        |
| Abamectine         |         |                     |                |               |           |           |          |         |           |              |          |                        |

Strongl. digest. : Strongles digestifs; Strongl. resp : Strongles respiratoires

Fasc. : Fasciola

Aucune activité ou très faible activité (infra-thérapeutique)

Activité bonne à très bonne (environ 60 à 90%)

Excellente activité (supérieure à 90% dans les conditions expérimentales)

<sup>\*</sup> Efficace contre Sarcoptes scabiei

Tableau 71: Anthelminthiques utilisés chez les ovins

|                    |                     |                            |               |           |          | Fasc    | iola      |              |        |                        |
|--------------------|---------------------|----------------------------|---------------|-----------|----------|---------|-----------|--------------|--------|------------------------|
| Molécule           | Strongles digestifs | Strongles<br>respiratoires | Strongyloides | Ascarides | Cestodes | Adultes | Immatures | Dicrocoelium | Estrus | Sarcoptes<br>Psoroptes |
| Thiabendazole      |                     |                            |               |           |          |         |           |              |        |                        |
| Oxibendazole       |                     |                            |               |           |          |         |           |              |        |                        |
| Mébendazole        |                     |                            |               |           |          |         |           |              |        |                        |
| Fenbendazole       |                     |                            |               |           |          |         |           |              |        |                        |
| Oxfendazole        |                     |                            |               |           |          |         |           |              |        |                        |
| Albendazole        |                     |                            |               |           |          |         |           |              |        |                        |
| Triclabendazole    |                     |                            |               |           |          |         |           |              |        |                        |
| Thiophanate        |                     |                            |               |           |          |         |           |              |        |                        |
| Fébantel           |                     |                            |               |           |          |         |           |              |        |                        |
| Nétobimin          |                     |                            |               |           |          |         |           |              |        |                        |
| Lévamisole         |                     |                            |               |           |          |         |           |              |        |                        |
| Pyrantel, tartrate |                     |                            |               |           |          |         |           |              |        |                        |
| Phénothiazine      |                     |                            |               |           |          |         |           |              |        |                        |
| Nitroxinil         |                     |                            |               |           |          |         |           |              |        |                        |
| Oxyclozanide       |                     |                            |               |           |          |         |           |              |        |                        |
| Bithionoloxide     |                     |                            |               |           |          |         |           |              |        |                        |
| Closantel          |                     |                            |               |           |          |         |           |              |        |                        |
| Niclosamide        |                     |                            |               |           |          |         |           |              |        |                        |
| Ivermectine        |                     |                            |               |           |          |         |           |              |        |                        |
| Abamectine         |                     |                            |               |           |          |         |           |              |        |                        |

Aucune activité ou très faible activité (infra-thérapeutique)

Activité bonne à très bonne (environ 60 à 90%)

Excellente activité (supérieure à 90% dans les conditions expérimentales)

Tableau 72: Anthelminthiques utilisés chez les équidés

|                   |         | Strongl                              | es                               |            | Оху     | ures   |                |           |               |               |
|-------------------|---------|--------------------------------------|----------------------------------|------------|---------|--------|----------------|-----------|---------------|---------------|
| Molécule          | Adultes | Larves <i>Strongylus</i><br>vulgaris | Larves de<br><i>Cyathostomum</i> | Parascaris | Adultes | Larves | Strongyloides. | Habronema | Cestodes      | Gastérophiles |
| Thiabendazole     |         |                                      |                                  |            |         |        |                |           |               |               |
| Oxibendazole      |         |                                      |                                  |            |         |        |                |           |               |               |
| Mébendazole       |         |                                      |                                  |            |         |        |                |           |               |               |
| Id. + trichlorfon |         |                                      |                                  |            |         |        |                |           |               |               |
| Fenbendazole      |         |                                      |                                  |            |         |        |                |           |               |               |
| Oxfendazole       |         |                                      |                                  |            |         |        |                |           |               |               |
| Albendazole       |         |                                      |                                  |            |         |        |                |           |               |               |
| Fébantel          |         |                                      |                                  |            |         |        |                |           |               |               |
| Id. + trichlorfon |         |                                      |                                  |            |         |        |                |           |               |               |
| Pyrantel, pamoate |         |                                      |                                  |            |         |        |                |           | 2x la<br>dose |               |
| Pipérazine,       |         |                                      |                                  |            |         |        |                |           |               |               |
| dithiocarbamate   |         |                                      |                                  |            |         |        |                |           |               |               |
| Niclosamide       |         |                                      |                                  |            |         |        |                |           |               |               |
| Dichlorvos        |         |                                      |                                  |            |         |        |                |           |               |               |
| Ivermectine       |         |                                      |                                  |            |         |        |                |           |               |               |

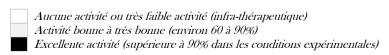



Tableau 73: Anthelminthiques utilisés chez les volailles

| Molécule             | Ascarides | Heterakis | Capillariidés | Syngames | Spirmes | Cestodes | Trématodes |
|----------------------|-----------|-----------|---------------|----------|---------|----------|------------|
| Mébendazole          |           |           |               |          |         |          |            |
| Flubendazole         |           |           |               |          |         |          |            |
| Fenbendazole         |           |           |               |          |         |          |            |
| Lévamisole           |           |           |               |          |         |          |            |
| Pipérazine (hydrate) |           |           |               |          |         |          |            |
| Nitroxinil           |           |           |               |          |         |          |            |
| Niclosamide          |           |           |               |          |         |          |            |
| Praziquantel         |           |           |               |          |         |          |            |
| Oxyclozanide         |           |           |               |          |         |          |            |

Aucume activité ou très faible activité (infra-thérapeutique)
Activité bonne à très bonne (environ 60 à 90%)

Excellente activité (supérieure à 90% dans les conditions expérimentales)

Tableau 74 : Protocole d'application des anthélminthiques chez les volailles

| Molécule     | Spectre<br>d'activité                   | Posologie                         | Durée du traitement  | Remarques                                                         |
|--------------|-----------------------------------------|-----------------------------------|----------------------|-------------------------------------------------------------------|
| Lévamisole   | Cappilariidés<br>Ascaridia<br>Heterakis | 20 - 25<br>mg/kg                  | 1x                   | Dans l'eau                                                        |
| Lévamisole   | Amidostoum (oie)                        | 50 mg/kg                          | 1x                   |                                                                   |
| Mébendazole  | Ascaridia<br>Heterakis                  | 10 mg/kg                          | 3 ј.                 | Colombiformes<br>et<br>psittaciformes<br>sensible (5<br>mg/kg 1x) |
| Mébendazole  | Capillariidés                           | 30 mg/kg                          | 3 j.                 |                                                                   |
| Fenbendazole | Ascaridia<br>Heterakis                  | 10 mg/kg ou<br>30 ppm             | 1x 4 j.              | Dindon: 18<br>ppm pdt. 7 j.                                       |
| Fenbendazole | Capillariidés<br>Cestodes               | 30 mg/kg<br>8 mg/kg ou<br>240 ppm | 3 j.<br>6 j.<br>6 j. | Railietina<br>cesticillus                                         |
| Praziquantel | Cestodes<br>Trématodes                  | 5 - 10 mg/kg                      | 1 fois               | Hors AMM                                                          |
| Niclosamide  | Cestodes                                | 150 - 200<br>mg/kg                | 1 x                  |                                                                   |
| Niclosamide  | Trématodes                              | 500 mg/kg                         | 1 x                  |                                                                   |
| Flubendazole | Polyparasitisme                         | 30 mg/kg                          | 7 j.                 | Diverses<br>espèces :<br>galliformes, oie                         |

Tableau 75: Anthelminthiques utilisés chez le chien

| Molécule            | Toxocara | Toxascaris | Ancylostoma | Strongylus | Trichuris | Dipylidium | Taenia | Echinococcus | Sarcoptes |
|---------------------|----------|------------|-------------|------------|-----------|------------|--------|--------------|-----------|
| Thiabendazole       |          |            |             |            |           |            |        |              |           |
| Mébendazole         |          |            |             |            |           |            |        |              |           |
| Flubendazole        |          |            |             |            |           |            |        |              |           |
| Fenbendazole        |          |            |             |            |           |            |        |              |           |
| Oxfendazole         |          |            |             |            |           |            |        |              |           |
| Fébantel            |          |            |             |            |           |            |        |              |           |
| Lévamisole          |          |            |             |            |           |            |        |              |           |
| Pyrantel, pamoate   |          |            |             |            |           |            |        |              |           |
| Oxantel             |          |            |             |            |           |            |        |              |           |
| Nitroxinil          |          |            |             |            |           |            |        |              |           |
| Nitroscanate        |          |            |             |            |           |            |        |              |           |
| Praziquantel        |          |            |             |            |           |            |        |              |           |
| Epsiprantel         |          |            |             |            |           |            |        |              |           |
| Niclosamide         |          |            |             |            |           |            |        |              |           |
| Pipérazine, adipate |          |            |             |            |           |            |        |              |           |
| Dichlorvos          |          |            |             |            |           |            |        |              |           |
| Ivermectine         |          |            |             |            |           |            |        |              |           |

Aucune activité ou très faible activité (infra-thérapeutique)

Activité bonne à très bonne (environ 60 à 90%)

Excellente activité (supérieure à 90% dans les conditions expérimentales)

Tableau 76: Anthelminthiques utilisés chez le chat

| Molécule            | Ascarides | Ancylostomes | Strongyloides | Dipylidium | Taenia | Otodectes |
|---------------------|-----------|--------------|---------------|------------|--------|-----------|
| Thiabendazole       |           |              |               |            |        |           |
| Mébendazole         |           |              |               |            |        |           |
| Flubendazole        |           |              |               |            |        |           |
| Lévamisole          |           |              |               |            |        |           |
| Pyrantel, pamoate   |           |              |               |            |        |           |
| Praziquantel        |           |              |               |            |        |           |
| Niclosamide         |           |              |               |            |        |           |
| Pipérazine, adipate |           |              |               |            |        |           |
| Ivermectine         |           |              |               |            |        |           |
| Emodepside          |           |              |               |            |        |           |

Aucune activité ou très faible activité (infra-thérapeutique)

Activité bonne à très bonne (environ 60 à 90%)

Excellente activité (supérieure à 90% dans les conditions expérimentales)

Tableau 77: Anthelminthiques utilisés chez le porc

| Molécule           | Strongles<br>digestifs | Ascarides | Strongles<br>respiratoires | Strongyloides | Spirures | Trichures | Sarcoptes | Poux |
|--------------------|------------------------|-----------|----------------------------|---------------|----------|-----------|-----------|------|
| Thiabendazole      |                        |           |                            |               |          |           |           |      |
| Oxibendazole       |                        |           |                            |               |          |           |           |      |
| Flubendazole       |                        |           |                            |               |          |           |           |      |
| Fenbendazole       |                        |           |                            |               |          |           |           |      |
| Oxfendazole        |                        |           |                            |               |          |           |           |      |
| Thiophanate        |                        |           |                            |               |          |           |           |      |
| Fébantel           |                        |           |                            |               |          |           |           |      |
| Lévamisole         |                        |           |                            |               |          |           |           |      |
| Pyrantel, tartrate |                        |           |                            |               |          |           |           |      |
| Pipérazine,        |                        |           |                            |               |          |           |           |      |
| dithiocar.         |                        |           |                            |               |          |           |           |      |
| Dichlorvos         |                        |           |                            |               |          |           |           |      |
| Ivermectine        |                        |           |                            |               |          |           |           |      |

Aucune activité ou très faible activité (infra-thérapeutique)

Activité bonne à très bonne (environ 60 à 90%)

Excellente activité (supérieure à 90% dans les conditions expérimentales)

### Nouvelles molécules antiparasitaires en médecine vétérinaire

Depuis plusieurs années, le nombre de nouveaux antiparasitaires a diminué de manière remarquable ! Parmi ces quelques molécules, deux sont à citer :

#### Monepantel (Zolvix)

C'est un anthelminthique qui a été découvert en 2000. Il est indiqué dans plusieurs pays chez des animaux hébergeant des parasites résistants aux anthelminthiques « classiques », cette molécule doit être donc utilisée avec parcimonie et de manière raisonnée et ce afin de ne pas accélérer l'apparition de résistances vis-à-vis d'elle.

C'est un anthelminthique oral indiqué dans la lutte contre les nématodes gastro-intestinaux chez les ovins, il s'administre à la posologie de 2,5 mg/kg.

Le monepantel est le premier membre de la nouvelle classe d'anthelminthiques : dérivés amino-acétonitrile (DAA). Le monepantel provoque une paralysie des vers en se liant à un récepteur spécifique qui se trouve uniquement chez les nématodes parasites d'où un index thérapeutique de 10.

#### Fluazuron (Acatak PO 025)

Le fluazuron offre une approche moderne de lutte contre les tiques qui est plus respectueuse de l'environnement et non toxique pour l'Homme et les animaux. Le produit est toxique pour les invertébrés aquatiques.

Le fluazuron est un régulateur de la croissance des acariens appartenant au groupe de benzoyle-phényl-urées (BPU), il interfère avec la synthèse de la chitine.

Les tiques immatures sont incapables de muer pour donner le stade suivant, et aucune larve n'éclot des œufs pondus par les femelles traitées.

Acatak est une solution pour-on indiquée pour la lutte contre la tique monophasique Rhipicephalus spp. (Boophilus spp.) mais l'utilisation de cette molécule de manière répétée diminue significativement les populations de tiques diphasiques ou triphasiques.

La posologie varie en fonction de l'espèce de tique :

- 1,5 mg fluazuron/kg pour le contrôle de *Rhipicephalus* (*Boophilus*) *microplus* en Australie.
- 2,5 mg fluazuron/kg pour le contrôle de *Rhipicephalus* (*Boophilus*) *microplus* et *Rhipicephalus* (*Boophilus*) *decoloratus* en Amérique Latine et en Afrique, ainsi que pour la lutte contre les tiques triphasiques.

La fréquence des applications dépend de la tique cible, elle est de 7 à 12 semaines. Cette molécule peut être utilisée de manière stratégique 2 à 4 fois/an.

Ce médicament a obtenu une AMM aux États-Unis, en Australie et dans plusieurs pays d'Amérique Latine.

# Vaccins antiparasitaires en médecine vétérinaire

Le nombre de vaccins antiparasitaires en médecine vétérinaire est vraiment réduit et il l'est beaucoup plus en médecine humaine. Autant pour lutter contre les viroses et les bactérioses, le vétérinaire praticien dispose de plusieurs vaccins efficaces et assez souvent à des prix très abordables, autant, le nombre de vaccins antiparasitaires est très réduit.

#### Ceci pourrait s'expliquer par :

- [1] La taille des parasites, assez souvent beaucoup plus grande que celle des bactéries et des virus. Le montage de l'immunité antiparasitaire fait intervenir la conformation tridimensionnelle (structure tertiaire) de ces parasites en tant qu'antigènes.
- [2] Le nombre extrêmement élevé d'antigènes parasitaires intervenant dans le montage de l'immunité.
- [3] L'évolution très complexe des parasites, qui le plus souvent, passent par plusieurs stades parasitaires (plusieurs stades larvaires, nymphes, adultes mâles et femelles, sporozoïtes, tachyzoïtes, bradyzoïtes...) qui expriment forcément des antigènes différents.

[4] La disponibilité de médicaments antiparasitaires efficaces à des prix assez souvent abordables.

#### Encadré 12: Types de vaccins antiparasitaires

Les vaccins antiparasitaires peuvent être classés en fonction de la position taxonomique du parasite : vaccins contre les helminthes, les acariens, les insectes, les champignons... mais aussi en fonction de la composition du vaccin.

#### Il existe 6 types de vaccins:

- 1. À base de parasites vivants atténués
- 2. À base de parasites tués
- 3. À base de protéines de parasites
- 4. À base de protéines recombinantes
- 5. Vaccins vectorisés

Les vaccins sous-unitaires (trois derniers types) ont l'avantage de ne pas avoir de pouvoir pathogène résiduel et donc d'être totalement inoffensifs pour l'animal vacciné.

La liste des vaccins antiparasitaires est certes courte mais elle ne cesse de s'allonger.

#### Vaccins contre les acariens

Infestation par Rhipicephalus (Boophilus) microplus (Tickgard plus ND, Gavac ND)

Cette espèce de tique est absente en Tunisie, le seul représentant de ce genre en Tunisie est *Rhipicephalus* (*Boophilus*) annulatus.

Ce vaccin est à base d'une protéine recombinante (Bm86 pour *Boophilus microplus* 86, ce dernier est le poids moléculaire de la protéine). Administré à des bovins, il réduit de 56% l'intensité d'infestation par les tiques. Le gain moyen quotidien (GMQ) des bovins vaccinés est significativement plus élevé avec un gain relatif de 18,6 kg et une réduction significative des taux des cellules somatiques du lait.

#### Vaccins contre les helminthes

Il existe actuellement plusieurs essais de vaccination contre les helminthes. Les résultats sont différents mais l'une des limites de la commercialisation de ces vaccins est leur pertinence financière.

#### Vaccin contre le téniasis échinococcique

Un vaccin oral recombinant utilisable chez le chien a été développé en Tunisie et au Maroc. Il est composé de deux protéines recombinantes EgA31 (adulte et oncosphère) et EgTrop (protoscolex). Chez le chien, ce vaccin induit une réduction de 80% du nombre de vers et un retard de croissance des parasites chez 8,8% des animaux vaccinés.

#### Vaccin contre l'hydatidose ovine

Un vaccin contre l'hydatidose chez les ovins a été essayé avec succès. Il est à base d'une protéine recombinante (EG95). Ce vaccin induit une protection contre la maladie hydatique chez les ovins.

## Vaccin contre la bronchite vermineuse des bovins (Bovilis lungworm ND)

Il protège les veaux contre *Dictyocaulus viviparus*. Les parasites sont atténués par l'irradiation des larves L3 (1 000 larves par dose). Ainsi, le parasite s'expose au système immunitaire en effectuant son cycle entier. En effet, les parasites vaccinaux effectuent un cycle complet aboutissant même à l'élimination des L3 dans les fèces.

#### Vaccins contre les protozoaires

#### Vaccins contre la theilériose tropicale bovine

Des vaccins vivants atténués contre la theilériose tropicale bovine sont disponibles dans quelques pays. Ces vaccins sont à base de lignées cellulaires infectées par des schizontes de *Theileria annulata*. Cette atténuation est obtenue par passages successifs sur culture cellulaire. En Tunisie, il existe un vaccin contre la theilériose tropicale, non encore commercialisé, il est à base de culture cellulaire de la souche Béja au passage 280. Ce vaccin confère une protection contre les cas cliniques de plus de 75%<sup>78</sup>.

#### Vaccins contre les coccidioses aviaires

Vu l'importance de ces protozooses en aviculture, plusieurs travaux de recherche ont permis le développement de plusieurs vaccins efficaces. Trois sont actuellement disponibles en Tunisie : Livacox Q, Paracox-8 et Avalon ND.

-

<sup>&</sup>lt;sup>78</sup> Darghouth M.A. 2008. Review on the experience with live attenuated vaccines against tropical theileriosis in Tunisia: considerations for the present and implications for the future. *Vaccine*, 26 Suppl 6, G4-G10. DOI: 10.1016/j.vaccine.2008.09.065

Lors de la vaccination, l'eau de boisson et les aliments ne doivent pas contenir des anticoccidiens ou des molécules ayant cette activité (sulfamides) même sous forme de traces.

#### Avalon ND

Ce vaccin contient des ookystes sporulés de souches précoces de 5 espèces de coccidies : *E. acervulina, E. brunetti, E. maxima, E. necatrix* et *E. tenella.* 

#### Livacox Q ND

Ce vaccin est indiqué pour l'immunisation des poules pondeuses et des reproducteurs. C'est une suspension d'ookystes sporulés vivants d'*E. acervulina*, *E. maxima*, *E. necatrix* et *E. tenella*.

#### Paracox-8 ND

Ce vaccin comporte des ookystes sporulés de 7 lignées précoces atténuées : *E. acervulina, E. brunetti, E. maxima, E. mitis, E. necatrix, E. praecox* et *E. tenella.* 

#### Vaccin contre la toxoplasmose (Toxovax ND)

C'est un vaccin contre la toxoplasmose indiqué chez les brebis. Il est constitué d'une souche atténuée de *Toxoplasma gondii* (souche 48), il protège les brebis contres les avortements toxoplasmiques à vie suite à une injection unique par la voie intramusculaire effectuée au moins 4 mois avant la lutte.

#### Vaccin contre la néosporose (Neogard ND)

C'est un vaccin inactivé adjuvé avec l'havlogene, son efficacité varie entre 5,2 et 54%. Ce vaccin a confié une protection chez 15 des 25 troupeaux vaccinés. L'efficacité moyenne du vaccin a été estimée à 46%.

Ce vaccin a été retiré du commerce du fait de sa faible efficicaté.

#### Vaccin contre la babésiose canine (Pirodog ND)

C'est un vaccin à base d'antigènes solubles concentrés de *Babesia canis* inactivé et adjuvé à la saponine.

Le protocole vaccinal consiste à effectuer deux injections de primo-vaccination espacées de 3 à 4 semaines à partir de la première injection (à partir du 5 mois d'âge), les rappels sont annuels ou semestriels. Ce vaccin est contre-indiqué chez les gestantes et les animaux ayant développé une babésiose depuis moins de 8 semaines. En effet, la babésiose provoque une immunodépression qui dure environ 6 semaines.

Chez les chiens porteurs asymptomatiques de *B. canis*, l'efficacité du vaccin est compromise.

Pirodog ND ne protège pas contre les infections par *Babesia* vogeli.

#### Vaccins contre la leishmaniose générale du chien

Vu l'importance de cette maladie, plusieurs travaux de recherche sont en cours pour développer et améliorer ces vaccins.

#### CaniLeih ND

C'est un vaccin qui a une AMM dans plusieurs pays d'Europe du Sud et en Tunisie, il est à base d'antigènes de sécrétion-excrétion pour l'immunisation contre la leishmaniose générale du chien (infection par *Leishmania infantum*).

Le vaccin est indiqué chez les chiens **non infectés** (donc séronégatifs) de plus de 6 mois d'âge. Le protocole vaccinal comporte 3 injections sous-cutanées de primo-vaccination espacées de 3 semaines et des rappels annuels. L'animal est immunisé un mois après la dernière injection de primo-vaccination.

#### Leishmune ND

Ce vaccin contre la leishmaniose canine a été développé et commercialisé. Il contient le ligand Fructose-Mannose (FML) antigène de *Leishmania donovani*.

Après 11 mois de recul, tous les animaux vaccinés étaient protégés malgré la présence d'une séroconversion chez tous les animaux et l'absence de symptômes.

Ce vaccin ne peut être utilisé en Afrique du nord car il est dirigé contre *L. donovani* et non *L. infantum*.

#### Letifend ND

Ce vaccin est à base d'une protéine recombinante Q de *Leishmania infantum* MON-1. Les chiens à vacciner doivent être âgés de plus de 6 mois. Après une injection unique, l'immunité s'installe 28 jours après, les rappels sont annuels.

C'est un nouveau vaccin contre la leishmaniose qui n'a pas encore d'AMM en Tunisie.

#### Vaccin antimycosique (Insol Trichophyton ND)

Ce vaccin inactivé est utilisé pour la prophylaxie et comme aide au traitement des teignes. Deux injections intramusculaires à deux semaines d'intervalle avec des rappels annuels sont nécessaires. Ces deux injections doivent impérativement être faites sur les deux faces de l'encolure.

Chaque millilitre du vaccin contient au moins 17 x 10<sup>6</sup> microconidies de :

- Trichophyton verrucosum (souche N° 410)
- Trichophyton mentagrophytes (souche N° 1032)
- Trichophyton sarkisovii (souche  $N^{\circ}$ 551)
- Un maximum de 0,040 mg thimerosal (plus connu sous le nom de merthiolate).

Ce vaccin est indiqué dans l'immunisation des bovins à partir d'un mois d'âge contre la teigne bovine due à : *Trichophyton* verrucosum, *Trichophyton mentagrophytes* et *Trichophyton* sarkisovii.

## Lutte contre les strongyloses digestives des petits ruminants

#### Définition et importance

Les strongyloses digestives des ruminants sont des parasitoses dues à une infestation par des nématodes *Strongylida* appartenant à plusieurs espèces. Le plus souvent, la maladie est due à plusieurs espèces parasitaires, on parle alors « d'association de malfaiteurs ». Les petits ruminants sont spécialement sensibles à ces parasitoses qui peuvent être à l'origine d'une diarrhée, d'un amaigrissement, d'une anémie... L'infestation peut aller d'une faible diminution du gain moyen quotidien à la mort. On comprend alors très facilement l'importance de ces parasites en médecine vétérinaire.

Leur caractère insidieux (les animaux infestés expriment rarement un tableau clinique, la notion de l'iceberg s'applique très bien à ces parasitoses!) et la chronicité de leur évolution (des animaux porteurs de parasites le restent pendant plusieurs mois, voire, plusieurs années) fait que ces parasitoses sont très importantes.

## Épidémiologie générale des strongyloses digestives des petits ruminants

L'impact de ces parasites sur la santé des animaux dépend de plusieurs facteurs : espèce parasitaire, race de l'hôte, son état de santé (immunité, état corporel, stade physiologique, âge...), intensité d'infestation...

Le rôle du sexe de l'animal dans la sensibilité à l'infestation est controversé, certaines études montrent que les femelles sont plus sensibles, d'autres, l'inverse et enfin certaines autres montrent que le sexe n'a pas d'influence. Au vu de ces résultats, il faut conclure que le sexe intervient non pas en tant que facteur de risque mais par le biais d'autres facteurs tels que la gestation, la lactation, le cycle hormonal, la conduite de l'élevage... et même des différences comportementales.

L'âge est un facteur de risque très important, toutes les études montrent que le nombre d'œufs par gramme de matières fécales est inversement proportionnel à l'âge. Plus les animaux sont âgés, moins ils excrètent d'œufs dans leurs fèces.

Il est important de rappeler que les strongles digestifs ne sont pas les seuls parasites à l'origine de troubles de la santé chez les petits ruminants. Il faut tenir compte des infestations par les cestodes imaginales<sup>79</sup> (*Moniezia* spp...), les cestodoses larvaires (notamment l'échinococcose hydatique), les protozoaires (coccidies, cryptosporidies, *Giardia* spp...). Tous ces pathogènes peuvent s'intriquer de manière très complexe et difficile à prédire pour aboutir à un tableau clinique presque

.

<sup>&</sup>lt;sup>79</sup> **Imaginal**: de imago, stade correspondant aux adultes.

similaire. Pondérer le rôle de chacun de ces pathogènes doit passer obligatoirement par un diagnostic coprologique (examen microscopique des matières fécales à la recherche des éléments parasitaires).

Bien évidemment, il faut ajouter les autres causes de diarrhées, virales, bactériennes, alimentaires... Ce qui fait que les strongles digestifs sont l'un des facteurs entrant dans la pathogénie du complexe diarrhée (ou amaigrissement) des petits ruminants.

#### Cycle biologique des strongles digestifs

Les cycles des différentes espèces de strongles se caractérisent par la présence de deux phases : l'une parasitaire dans le tube digestif de l'hôte, l'autre libre dans le milieu extérieur (dans les bergeries mais surtout sur les pâtures).

Le développement des phases exogènes nécessite des conditions abiotiques favorables : oxygénation, température (de 25 à 26°C) et humidité.

La lutte contre les strongles doit prendre en considération cette caractéristique pour :

- [1] Rendre l'environnement défavorable à la survie de ces stades (hygiène des locaux d'élevage, des points d'eau et des pâtures).
- [2] Profiter des conditions défavorables de température et d'humidité dans le milieu extérieur (saison estivale) pour traiter les animaux avant de les mettre sur des pâtures « propres ».

IVERMED 1%

1% Signal of the second of the s

**Darafen** 2,5%

IVERMED PLUS إفرماد بلوس الاعتمال العلم ا



Qu'ils grandissent sains et saufs!



Darafen 2,5% 2,5% julij IVERMED PLUS إفرماد بلوس الاستخلاصة الاستخلاصة الاستخلاصة المستخلفة المستخلقة المستخلفة المستخلفة المستخلفة المستخل VERMED 1% إفرماد 1%



Qu'ils grandissent sains et saufs!

#### Relation âge - intensité d'infestation

L'intensité d'infestation des animaux par les strongles digestifs est inversement proportionnelle à l'âge des animaux. Cette relation a été mise en évidence par l'étude de la corrélation entre l'âge et le nombre d'œufs excrétés par les animaux par gramme de fèces.

#### Dynamique des formes parasitaires sur les pâtures

La dynamique des différentes formes est très importante à connaître, elle conditionne la réussite des programmes de lutte contre ces parasites.

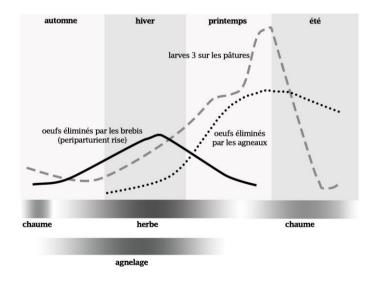



Figure 12 : Dynamique des formes parasitaires des strongles digestifs des petits ruminants sur les pâtures en Tunisie

#### Œufs éliminés par les brebis

Il y a un pic d'excrétion des œufs par les femelles qui correspond au phénomène de *peri-partiruent rise* (augmentation du nombre d'œufs éliminés par les brebis qui survient autour de l'agnelage). Il est dû à plusieurs facteurs :

- [1] L'encombrement exercé par l'utérus gravide sur le rumen or la satiété chez les ruminants est régie par des barocepteurs.
- [2] Une immunodépression chez les brebis pendant le *peri- partum*.
- [3] Une importante excrétion des IgA dans le colostrum et le lait or les IgA sont des effecteurs de l'immunité locale contre les strongles digestifs.

#### Œufs éliminés par les agneaux

Le sevrage des agneaux est à l'origine de leur infestation massive par les strongles. Comme les agneaux ne sont pas encore immunisés, ils se mettent à excréter les œufs avec un pic situé vers la fin du printemps - le début de l'été.

#### Spring rise

C'est une augmentation de l'excrétion des œufs par les animaux qui survient pendant le printemps.

#### Larves 3 sur les pâtures

Les larves 3 sur les pâtures s'accumulent suite à une excrétion croissante d'œufs par les brebis et surtout les agneaux. Un pic est alors observé vers la fin du printemps-le début de l'été. En été, cette population diminue sur les pâtures sous l'effet de la

température et de la sécheresse. Le soleil joue alors le rôle « d'antiparasitaire naturel ».

#### Lutte contre les strongyloses digestives des petits ruminants

Quelques règles sont à rappeler lors de la mise en place d'un programme de lutte contre les strongyloses :

- [1] Effectuer une visite de l'élevage et s'entretenir avec l'éleveur sur la conduite de l'élevage. A l'occasion de cette visite, il faut relever les facteurs de risque (copâturage, promiscuité, automédication...). Cette visite est connue par les Néozélandais sous le nom « d'excursion épidémiologique ».
- [2] S'informer sur les moyens dont dispose l'éleveur : financiers, infrastructure...
- [3] Évaluer la motivation de l'éleveur pour mener un programme de lutte raisonné.
- [4] Estimer la propension à payer<sup>80</sup> de l'éleveur.
- [5] Bien expliquer à l'éleveur l'épidémiologie des strongyloses, plus on lui explique plus il va se rendre compte que c'est compliqué et que le vétérinaire est un acteur incontournable. Il faut surtout lui expliquer que malgré que les anthelminthiques soient utilisés depuis des années, le problème persiste en Tunisie.
- [6] Décider des actions à entreprendre : il ne faut jamais se limiter aux traitements anthelminthiques. Seule, cette action ne donnera qu'une efficacité partielle, en tout cas limitée dans le temps. Certains auteurs recommandent

<sup>\*\*</sup> Propension à payer (en anglais : willingness to pay) : c'est la disposition à payer d'une personne pour acquérir un bien ou un service. Elle est différente de la capacité financière.

- de proposer un ensemble d'actions, ils parlent de « paniers d'options de lutte ».
- [7] Effectuer une coprologie sur les différentes catégories d'animaux : mâles, femelles, jeunes adultes, malades et non malades pour connaître la faune parasitaire infestant les animaux.

#### Principales mesures de lutte contre les strongyloses digestives

Les mesures de lutte peuvent être classées en deux groupes d'actions :

#### Mesures hygiéniques

- [1] Éviter la promiscuité des animaux, surtout celle des jeunes et des adultes.
- [2] Éviter le surpâturage.
- [3] Mettre sur les pâtures les bovins puis les petits ruminants.
- [4] Assurer une hygiène des points d'eau.
- [5] Nettoyer les bergeries car elles peuvent représenter une source de recontamination des animaux.

#### Mesures médicales

Il faut associer des traitements stratégiques (à effectuer systématiquement) et ce, quel que soit la situation épidémiologique de l'élevage et des traitements tactiques. Ces derniers sont à proposer lorsque les conditions climatiques sont favorables. Ils sont alors appliqués à la demande, de ce fait, leur nombre et leur dates varient d'un élevage à un autre et d'une année à l'autre.

#### Il faut aussi...

- [1] Éliminer les animaux hyper-infestés et en très mauvais état général, car ils restent excréteurs et ils représentent une non-valeur économique.
- [2] Contrôler l'efficacité des traitements par des coprologies post-thérapeutiques.
- [3] Tout noter sur un registre pour pouvoir par la suite faire un suivi de l'élevage.
- [4] Changer tous les ans de molécules en utilisant des molécules ayant des modes d'action différents. Cette mesure permet de freiner le développement des populations parasitaires résistantes.
- [5] Il est important de respecter les règles générales d'utilisation de médicaments : temps d'attente pour la viande, délais de retrait pour les femelles dont le lait est destiné à la consommation humaine et contre-indications relatives à certaines molécules (gestation...).

#### Traitements stratégiques

Ce sont des traitements à effectuer systématiquement quelque soit les conditions abiotiques (pluviométrie, température et humidité).

Tableau 78 : Principes généraux des traitements anthelminthiques

| Traitement                                                          | Objectif                                                                                                                                                                                                             |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brebis 2 à 3 semaines avant l'agnelage (ou au moment de l'agnelage) | Lutter contre le <i>peri-partiruent rise</i> .                                                                                                                                                                       |
| Tout le troupeau<br>8 à 10 semaines après<br>l'agnelage             | <ul> <li>Diminuer la biomasse parasitaire dans tout<br/>le troupeau.</li> <li>Éviter ainsi que les agneaux ne recyclent les<br/>parasites.</li> </ul>                                                                |
| Tout le troupeau<br>Avant la mise sur les<br>chaumes                | - Mettre des animaux non excréteurs de formes parasitaires sur des pâtures non contaminées (animaux propres sur des pâtures propres).  - Profiter des conditions défavorables pour diminuer la biomasse parasitaire. |
| Tout le troupeau                                                    | Lutter contre le <i>spring rise</i> .                                                                                                                                                                                |
| Pendant le printemps                                                |                                                                                                                                                                                                                      |
| Agneaux de boucherie en                                             | Profiter d'un GMQ maximal.                                                                                                                                                                                           |
| élevage intensif                                                    |                                                                                                                                                                                                                      |
| Tous les mois                                                       |                                                                                                                                                                                                                      |

#### Traitements tactiques

Ils doivent être appliqués si les conditions climatiques sont favorables à une augmentation du risque de l'infestation parasitaire. Il s'agit donc de traitements effectués à la demande en se basant sur les données météorologiques et sur les examens coprologiques. Par exemple, s'il pleut l'été (ce qui est tout à fait possible durant certaines années en Tunisie), il y a une augmentation du risque d'infestation, il faut alors instaurer un traitement anthelminthique.

#### Règles d'utilisation des anthelminthiques

Pour assurer une lutte efficace contre les helminthes des petits ruminants mais aussi la pérennité de cette efficacité, plusieurs règles sont à respecter. Ceci est d'autant plus important que le nombre de molécules anthelminthiques n'a pas beaucoup augmenté depuis plusieurs années.

- [1] Proscrire l'automédication par les éleveurs. (i) elle n'est pas efficace. (ii) elle favorise l'apparition des résistances (iii) risque d'être à l'origine de résidus dans les denrées alimentaires destinées à la consommation humaine.
- [2] Éviter l'administration non raisonnée d'anthelminthiques.
- [3] Cibler les parasites présents dans l'élevage avec les anthelminthiques adéquats pour éviter le développement de résistances.
- [4] Éviter le sous-dosage qui favorise le développement de résistances.
- [5] Éviter le surdosage qui peut être toxique lors de l'utilisation de certains anthelminthiques ayant un faible index thérapeutique et augmente le coût des actions de lutte.
- [6] Respecter le temps d'attente et le délai de retrait.
- [7] Certains anthelminthiques (surtout les benzimidazolés) sont embryotoxiques, ils sont de ce fait contre-indiqués chez les femelles gestantes.
- [8] Traiter tous les animaux du troupeau, ne pas omettre les autres animaux de l'élevage (notamment les caprins).
- [9] Garder les animaux traités à la bergerie pendant 24 heures avant de les mettre sur les pâturages.
- [10] Nettoyer les bergeries après le traitement.

- [11] Faire paître les petits ruminants après les bovins. Il a été démontré que cet enchaînement permet de garder des pâtures propres pour les petits ruminants.
- [12] Diviser les prairies en lots et n'utiliser qu'une parcelle à la fois.
- [13] Apporter une ration suffisante et équilibrée. En effet, un apport de 130% des besoins en protéines chez les brebis supprime le *peri-parturient rise*.
- [14] Supplémenter les animaux en oligo-éléments : phosphore, molybdène et cuivre. Il faut dans ce cas faire très attention à l'intoxication des ovins par le cuivre.
- [15] Sélectionner les reproducteurs. Cette sélection peut se faire sur l'un des deux caractères : la résilience ou la résistance aux parasites (Encadré 13, Tableau 79).

#### Encadré 13: Résistance ou résilience ?

Ces deux caractères ne sont pas corrélés, c'est-à-dire qu'un animal ayant une bonne résilience aux parasites peut avoir une mauvaise résistance.

Le logiciel *WormFECTM* se base sur les titres en Ac ainsi que l'estimation de la population parasitaire chez les animaux et il attribue un index à chaque géniteur. Il est alors question de choisir les animaux qui donnent les meilleurs index.

Des travaux de recherche en génie génétique sont actuellement en cours pour désactiver des gènes codant pour la virulence chez les parasites. Ces travaux ont été réalisés avec succès sur des nématodes libres.

Tableau 79 : Différence entre résistance et résilience

| Résistance                                                                     | Résilience                                                                              |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Capacité d'un hôte à réduire le nombre de parasites                            | Capacité d'un hôte à se<br>développer normalement malgré<br>une infestation parasitaire |
| Héritabilité similaire à celle de plusieurs caractères de production (h²=0,35) | Faible héritabilité (h²=0,1 à 0,19)                                                     |
| Les animaux utilisent une partie de leur                                       | Le système immunitaire tolère les                                                       |
| énergie pour combattre l'infestation                                           | parasites                                                                               |
| Evaluée par le nombre d'opg chez des                                           | Difficile à évaluer mais                                                                |
| animaux infestés expérimentalement                                             | empiriquement mise en évidence                                                          |

Mesures permettant de limiter la sélection d'helminthes gastrointestinaux chimiorésistants (d'après Coles et al., 1994; Bjorn, 1994; Coles, 2005)

- [1] Minimiser l'utilisation des anthelminthiques : contrôler les parasites sans pour autant viser leur éradication.
- [2] Administrer les anthelminthiques pendant les pics d'infestations.
- [3] Prendre en compte la rémanence des antiparasitaires administrés.
- [4] Adapter la posologie et éviter les sous-dosages et les surdosages.
- [5] Appliquer des méthodes zootechniques et agronomiques permettant la réduction du nombre de traitements.
- [6] Préserver un « refuge de sensibilité » permettant de maintenir des gènes de sensibilité au sein de la population de parasites.

# Lutte contre les strongyloses des équidés

La lutte contre les endoparasites des équidés présente plusieurs analogies avec celle des petits ruminants. La même logique doit être suivie. Les équidés ne sont qu'un cas particulier dans la mise en place des programmes de lutte contre les strongyloses. Étant parfois d'une très haute valeur vénale, affective et zootechnique, les problèmes de parasitoses doivent être bien maîtrisés.

De plus, les animaux de sport ne doivent pas souffrir d'une diminution de leurs performances du fait des parasites. C'est pour cette raison qu'une attention particulière doit être apportée quant à l'infestation par les parasites chez cette espèce.

Certaines règles sont à suivre aussi bien dans le cadre de la prophylaxie sanitaire que médicale :

#### Prophylaxie sanitaire

[1] Contrôler périodiquement l'état d'infestation des animaux par des coprologies individuelles.

- [2] Veiller à une excellente hygiène des locaux d'élevage, des pâtures et du matériel d'élevage (pouvant être à l'origine de transmission de pathogènes).
- [3] Respecter la notion de la citadelle (*Rien n'entre, rien ne sort*), permettant ainsi d'éviter l'introduction de parasites à partir du milieu extérieur.

#### Prophylaxie médicale

- [1] Associer un traitement contre les nématodes (diverses espèces de strongles), les cestodes (*Anoplocephala* spp.) et les insectes (gastérophiles).
- [2] N'utiliser que des molécules ayant des AMM aussi bien pour l'espèce que pour la voie d'administration. Par exemple, ne pas injecter l'ivermectine par la voie parentérale chez les équidés.
- [3] Respecter les doses prescrites en fonction du poids des animaux.
- [4] Effectuer des coproscopies après les traitements, ce qui permet de vérifier leurs efficacités.
- [5] Suivre de manière drastique les programmes de lutte.
- [6] Changer tous les ans ou tous les deux ans de molécule. Il faut utiliser des molécules ayant des modes d'action différents.
- [7] Traiter tous les animaux susceptibles, notamment les ânes et les mulets qui sont assez souvent négligés mais représentent une source non négligeable d'infestation.
- [8] Éviter la promiscuité d'espèces et de catégories d'animaux qui est à l'origine d'infestations des animaux.
- [9] Observer un excellent programme de lutte contre le téniasis échinococcique chez les chiens de l'élevage.

Encadré 14: Programme de vermifugation des équidés

| Catégorie de chevaux     | Rythme              |
|--------------------------|---------------------|
| Chevaux de grande valeur | Tous les 1 à 2 mois |
| Poulinières              |                     |
| Poulains et yearlings    | Tous les 2 à 3 mois |
| Chevaux au pré et au box | Tous les 3 à 6 mois |

Contrairement aux ruminants, l'objectif de la lutte est l'élimination totale des parasites. En effet, l'infestation par *Strongylus vulgaris* peut provoquer des troubles graves de la santé chez les équidés. Plusieurs autres espèces parasitaires provoquent une dimunition des performances physiques des équidés.

## Lutte contre les helminthoses du chien

La lutte contre les helminthes digestifs s'impose à plusieurs titres:

#### Faune helminthique très diversifiée

La faune helminthique du chien est très diversifiée, elle inclut deux classes importantes de parasites :

Les parasites à l'origine de troubles de la santé

Les helminthes revêtant ainsi un double intérêt, d'abord une importance médicale en induisant :

- (i) Des troubles cliniques variés.
- (ii) Une immunodépression qui diminue l'efficacité de la vaccination et prédispose les animaux à des maladies intercurrentes
- (iii) Des mortalités qui peuvent toucher des portées entières de chiots dans les élevages, en collectivités et en zones rurales.

Certains parasites sont transmissibles à l'Homme

Certaines zoonoses sont graves, nous citons le téniasis échinococcique.

Pour toutes ces raisons, le praticien doit acquérir une bonne connaissance de la biologie des parasites et de l'épidémiologie des parasitoses, notamment les facteurs de risques. Ces derniers sont très nombreux et variables en fonction de la parasitose considérée, il s'agit surtout des infestations par les puces, des déplacements non contrôlés, de l'alimentation (non contrôlée et insuffisante sur le plan qualitatif et quantitatif) et du scent-rolling<sup>81</sup>.

La lutte contre ces helminthes doit passer obligatoirement par l'association de mesures médicales et sanitaires.

#### Mesures médicales

### Programme de vermifugation

Les programmes de vermifugation varient en fonction de la catégorie d'animaux.

### Chiennes en reproduction

Le principal objectif dans ce cas et de lutter contre les vers adultes et les larves 3 somatiques en migration de *Toxocara canis* et d'*Ancylostoma caninum*. Il faut traiter les femelles pendant les chaleurs, deux semaines avant la mise-bas et toutes les deux semaines jusqu'au sevrage des chiots (Figure 13).

si Scent-rolling: comportement des chiens qui fait qu'ils se roulent sur le sol, parfois sur leurs matières fécales pour dissimuler certaines odeurs, par exemple celles dues au douchage. Il a été prouvé que ce comportement augmente le risque de transmission de parasites zoonotiques à l'Homme. Lee A.C.Y., Schantz P.M., Kazacos K.R., Montgomery S.P., Bowman D.D. 2010. Epidemiologic and zoonotic aspects of ascarid infections in dogs and cats. Trends in Parasitology. 26, 4, 155-161. DOI: https://doi.org/10.1016/j.pt.2010.01.002

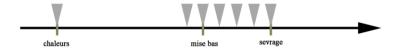



Figure 13 : Programme des traitements anthelminthiques des chiennes en reproduction

La plus petite distance entre deux flèches verticales correspond à un intervalle de 15 jours.

#### Chiots

Chez les chiots, le principal objectif est de lutter contre les vers adultes de *Toxocara canis* et d'*Ancylostoma caninum*. Il faut alors les traiter deux semaines après la mise bas et toutes les deux semaines jusqu'au sevrage (Figure 14).

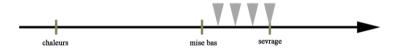



Figure 14: Programme des traitements anthelminthiques des chiots

La plus petite distance entre deux flèches verticales correspond à un intervalle de 15 jours.

### Mâles et femelles en dehors de la gestation

L'objectif de la lutte est d'empêcher les réinfestations par les nématodes et les cestodes. Il faut généralement traiter deux fois par an à part quelques exceptions (Encadré 15).

### Encadré 15: Cas particuliers

#### Chiens de chasse

Il faut lutter contre les ankylostomes adultes en traitant les animaux une fois toutes les trois semaines (car la période prépatente de ces parasites est de 3 semaines) pendant la période de chasse et effectuer un bain crésylé après chaque partie de chasse et ce, afin de détruire les L3 qui se seraient fixées sur le pelage du chien.

#### Chiens en liberté

Tous les chiens en liberté doivent faire l'objet d'une lutte contre le téniasis échinococcique au moins une fois tous les trois mois, avec un optimum d'un traitement toutes les 6 semaines.

### Chiens récemment acquis

On considère ces chiens comme étant infestés et non traités. Dès leur acquisition, effectuer un traitement complet contre les nématodes et les cestodes.

#### Avant toute vaccination

Traiter contre les cestodes et les nématodes et ce afin de « délester » le système immunitaire de ces animaux et pouvoir obtenir une bonne réponse post-vaccinale.

### Lutte contre le téniasis échinococcique

- Contrôler l'alimentation du chien et l'équilibrer sur le plan qualitatif et quantitatif
- Contrôler les déplacements du chien
- Considérer tous les chiens de chasse et de berger à risque
- Traitement toutes les 6 semaines si la lutte est individuelle
- Traitement tous les six mois si un programme de lutte collective est mis en place dans une région ou un pays

### Critères de choix d'un anthelminthique

Ils dépendent de plusieurs facteurs (Encadré 16).

### Encadré 16 : Efficacité et spectre d'activité qui dépend de deux facteurs :

- La molécule
- Le stade parasitaire ciblé (larve ou adulte)

### Index thérapeutique (dose toxique/dose thérapeutique)

Il varie énormément en fonction de la molécule, par exemple :

Lévamisole: 4

Benzimidazolés: 65

Pyrantel: 400

### Présentation galénique

- **Comprimés :** difficiles à administrer aux chiens agressifs et aux chiens anorexiques
- Injections, spot-on: à préférer pour les grands effectifs

#### Coût

Il est important à considérer, notamment dans deux contextes :

- Chez les animaux de grand format
- Sur un grand effectif de chiens

Tableau 80 : Anthelminthiques utilisables contre l'ascaridose et l'ankylostomose (d'après Lahmar S.)

| Molécule (nom<br>déposé) | Présentation | Spectre                | Posologie<br>(mg/kg) |
|--------------------------|--------------|------------------------|----------------------|
| Pipérazine               | Sirop        | Uniquement             | 100 à 200            |
| (Vermidog,               | Comprimés    | ascarifuge             |                      |
| Ascapipérazine,          |              | Spectre très étroit    |                      |
| Opovermifuge)            |              |                        |                      |
| Pyrantel                 | Pâte orale   | Adulticide: ascarides  | 5                    |
| (Strongid)               |              | et ankylostomes        |                      |
| Lévamisole               | Comprimés    | Adulticide : ascarides | 10                   |
| (Némisol)                | Injectable   | et ankylostomes        | 5                    |

Tableau 81 : Anthelminthiques utilisables contre l'ascaridose, l'ankylostomose et la trichurose (d'après Lahmar S.)

| Molécule                   | Présentation      | Activité        | Posologie<br>(mg/kg/j) |
|----------------------------|-------------------|-----------------|------------------------|
| Fébantel                   | Comprimés         | Larvicide,      | 10 x 3 j.              |
| (Drontal, Rintal)          |                   | adulticide      |                        |
| Fenbendazole               | Comprimés         | Larvicide,      | 50 x 3 j.              |
| (Vermicur, Parafen         | hydrodispersibles | adulticide      |                        |
| <b>2,5%</b> , Panacur 250) |                   |                 |                        |
| Oxfendazole                | Suspension        | Larvicide,      | 11 x 3 j.              |
| (Dolthène, <b>Oxyver</b> ) | buvable           | adulticide      |                        |
| Mébendazole                | Comprimés         | Adulticide      | 22 x 3 j.              |
| (Telmin KH)                |                   |                 |                        |
| Flubendazole               | Pâte orale        | Adulticide      | 22 x 3 j.              |
| (Flubénol)                 | Comprimés         |                 |                        |
|                            | Comprimés         | Ascarides,      | 50                     |
| Nitroscanate               |                   | Ankylostomes,   |                        |
| (Lopatol)                  |                   | Dipylidium,     |                        |
|                            |                   | Taenia          |                        |
| Sélamectine                | Spot-on           | Ascarides,      | 6                      |
| (Stronghold)               |                   | Ankylostomes    |                        |
| Milbémycine                | Comprimés         | Toxocara canis, | 0,5                    |

| Molécule      | Présentation | Activité    | Posologie<br>(mg/kg/j) |
|---------------|--------------|-------------|------------------------|
| oxime         |              | Ancylostoma |                        |
| (Interceptor) |              | caninum,    |                        |
|               |              | Trichures   |                        |

 $\textbf{Tableau 82: Anthelminthiques utilisables contre le téniasis} \ \, (d'après \ Lahmar \ S.)$ 

| Molécule (nom<br>déposé) | Présentation      | Spectre cestodicide | Posologie<br>(mg/kg) |
|--------------------------|-------------------|---------------------|----------------------|
| Fenbendazole             | Comprimés         | Taenia spp.         | 50 x 5 j.            |
| (Vermicur,               | hydrodispersibles |                     |                      |
| <b>Parafen 2,5%</b> ,    |                   |                     |                      |
| Panacur 250)             |                   |                     |                      |
| Oxfendazole              | Solution buvable  | Taenia spp.         | 11 x 5 j.            |
| (Dolthène,               |                   | Dipylidium          |                      |
| Oxyver)                  |                   |                     |                      |
| Mébendazole              | Comprimés         | Taenia              | 22 x 5 j.            |
| (Telmin KH)              | -                 |                     | -                    |
|                          | Comprimés         | Taenia              | - 125                |
| Niclosamide              |                   | Dipylidium          | - 300                |
|                          |                   | Echinococcus        | - 500                |
| (Yomesan)                |                   | Sans action sur     |                      |
|                          |                   | Mesocestoïdes       |                      |
|                          | - Comprimés       | Taenia, Dipylidium  | - 5                  |
| Praziquantel             | - I.M., Spot-on,  | Echinococcus        | - 500 mg et          |
| (Droncit)                | Implants SC       | adultes et          | 100 μg/j.            |
|                          |                   | immatures           |                      |

Tableau 83 : Associations d'anthelminthiques contre les nématodes et les cestodes (d'après Lahmar S.)

| Molécules                                                       | Spectre d'activité                                                                                    |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Milbémycine + Praziquantel<br>(Milbémax) <i>Comprimés</i>       | (Ascarides, Ancylostoma, Trichuris) +<br>(Taenia, Dipylidium, Echinococcus,<br>Mesocestoides)         |
| Pyrantel + Oxantel +                                            | (Ascarides, Ancylostoma) + (Trichuris) +                                                              |
| Praziquantel                                                    | (Taenia, Dipylidium, Echinococcus,                                                                    |
| ( <b>Dolpac</b> ) Comprimés                                     | Mesocestoides)                                                                                        |
| Pyrantel + Fébantel +                                           | (Ascarides, Ancylostoma) + (Ascarides,                                                                |
| Praziquantel                                                    | Ancylostoma, Trichuris)+(Taenia,                                                                      |
| (Drontal P) Comprimés                                           | Dipylidium, Echinococcus)                                                                             |
| Lévamisole + Niclosamide                                        | (Ascarides, Ancylostoma) + (Taenia,                                                                   |
| (Biaverm, Stromiten)                                            | Dipylidium)                                                                                           |
| Comprimés                                                       |                                                                                                       |
| Fenbendazole + Praziquantel<br>(Caniquantel P) <i>Comprimés</i> | (Ascarides, Ancylostoma, Trichuris) +<br>(Taenia, Dipylidium, Echinococcus,<br>Mesocestoides)         |
| Moxidectine + imidaclopride<br>(Advocate) Spot on               | (Ascarides, <i>Ancylostoma, Trichuris</i> ) + (puces, agents des gales) Pas d'action sur les cestodes |

Tableau 84 : Anthelminthiques disponibles en Tunisie (d'après Lahmar S.)

| Molécule       | Chiots non sevrés | Chiennes<br>gestantes et<br>allaitantes | Jeunes et adultes |
|----------------|-------------------|-----------------------------------------|-------------------|
| Fenbendazole   | Efficace x 3 j.   | Efficace sur les                        | Nématodicide      |
| (Parafen 2,5%, | Index             | larves en                               | + Taenia x 5 j.   |
| Panacur,       | thérapeutique     | migration x 3 j.                        |                   |
| Vermicur)      | élevé             |                                         |                   |
| Hors AMM       |                   |                                         |                   |
|                | Efficace x 3 j.   | Efficace sur les                        | Nématodicide      |
| Oxfendazole    | Index             | larves en                               | + Taenia,         |
| (Oxyver)       | thérapeutique     | migration x 3 j.                        | Dipylidium x 5    |
|                | élevé             |                                         | j.                |

| Molécule                                                 | Chiots non sevrés                                  | Chiennes<br>gestantes et<br>allaitantes | Jeunes et adultes                                         |
|----------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|
| Mébendazole<br>(Telmin KH)                               | Efficace x 3 j.<br>Index<br>thérapeutique<br>élevé | Inefficace                              | Ascarides,<br>Ancylostoma,<br>Trichuris,<br>Taenia x 5 j. |
| Lévamisole +<br>Niclosamide<br>( <b>Biaverm</b> )        | Efficace Très faible index thérapeutique           | Inefficace                              | Ascarides, Ancylostoma, Taenia, Dipylidium                |
| Pyrantel + Oxantel + Praziquantel (Dolpac 10, Dolpac 25) | Interdit aux<br>animaux de moins<br>de 2 mois      | Inefficace                              | Nématodicide<br>et cestodicide                            |

### Calendrier pratique de vermifugation des chiens

Ci-dessous un calendrier pratique de vermifugation des chiens en Tunisie. Si le chien est exposé au téniasis échinococcique, ce parasite devient prioritaire.

Tableau 85 : Calendrier pratique de vermifugation des chiens en Tunisie (d'après Lahmar S.)

| Age                                       | Rythme                                                                | Spécialité                                                                                          |
|-------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 15 jours à 3 mois                         | 2x/mois                                                               | Biaverm ou Oxyver                                                                                   |
| 3 à 6 mois                                | 1 fois/mois                                                           | Dolpac ou Biaverm ou Oxyver                                                                         |
| Chiennes en<br>gestation et<br>allaitante | 15 j. avant la mise<br>bas et 1<br>vermifugation après<br>la mise bas | Parafen 2,5% (50 mg/kg/j. x3 j.)<br>ou Panacur (50 mg/kg/j. x3 j.)<br>ou Oxyver (11 mg/kg/j. x3 j.) |
| Plus de 6 mois                            | 2 x/an                                                                | Dolpac                                                                                              |

### Précautions d'emploi des anthelminthiques

Certaines précautions sont à prendre lors de l'utilisation des anthelminthiques chez les carnivores domestiques.

#### Toxocaroses massives chez les chiots

Il faut administrer la moitié de la dose pendant 2 jours et une dose complète 3 jours plus tard. En effet, la mort d'un grand nombre d'ascarides peut provoquer une embolisation intestinale et la libération du contenu intestinal des parasites qui contient des toxines. Il serait aussi possible d'utiliser la pipérazine qui est un ascarifuge.

### **Dipylidiose**

Le puces et à un degré moindre les poux sont des hôtes intermédiaires de *Dipylidium caninum*. La mise en place d'un programme de lutte concomitante contre les puces et les poux est nécessaire lors de la lutte contre la dipylidiose et vice versa.

### Cestodoses digestives du chien

Brûler les selles émises par les animaux durant les 36 heures qui suivent le traitement car il y a une élimination massive de parasites après l'administration d'anthelminthiques. Durant cette période, les animaux doivent être tenus en laisse.

### Chiennes gestantes

Proscrire les benzimidazolés durant la première moitié de gestation car ces molécules sont tératogènes.

### Ankylostomose

Laver les chiens dès leur retour des parties de chasse ou d'une promenade pour les débarrasser des larves 3 qui se seraient fixées sur leurs peaux.

### Mesures sanitaires d'accompagnement

Plusieurs mesures sanitaires doivent être mises en œuvre en association avec les mesures médicales, ces mesures sont parfois lourdes à mettre en œuvre mais sont importantes à considérer dans les chenils (Tableau 86).

Tableau 86 : Mesures sanitaires à appliquer pour lutter contre les endoparasites du chien

| Mesure                                                                                                                                                                                                       | Cestodoses<br>imaginales | Dipylidiose | Ankylostomose | Ascaridoses | Strongyloïdose |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|---------------|-------------|----------------|
| Éducation sanitaire                                                                                                                                                                                          | +                        | +           | +             | +           | +              |
| Contrôle des mouvements du chien                                                                                                                                                                             | +++                      |             |               |             |                |
| Contrôle de l'alimentation du chien                                                                                                                                                                          | +++                      |             |               |             |                |
| Dératisation                                                                                                                                                                                                 |                          |             |               | +++         |                |
| Lavage quotidien des locaux d'élevage<br>(jet d'eau sous pression)<br>Ramassage et enfouissement des selles<br>Nettoyage hebdomadaire au Kärcher<br>du sol (eau de javel à 5%, crésyl 3%,<br>eau bouillante) |                          |             |               | +++         | +++            |
| Lutte contre les puces (et secondairement les poux)                                                                                                                                                          |                          | +++         |               |             |                |
| Séparation des espèces                                                                                                                                                                                       | +                        |             |               | +           | +              |
| Séparation des classes d'âge                                                                                                                                                                                 |                          |             |               | +           |                |
| Lavage du chien après la chasse et promenade                                                                                                                                                                 |                          |             | +++           |             |                |
| Niches en dur, cimentage du sol, éviter<br>le surpeuplement                                                                                                                                                  |                          |             |               |             | +              |

### Lutte contre les tiques en Tunisie

La lutte contre les tiques doit être menée selon un programme établi par le vétérinaire en concertation avec le propriétaire, elle doit être réfléchie et doit prendre en considération les bénéfices et les coûts de chaque option de lutte. Pour réussir, la stratégie de lutte contre les tiques, on doit prendre en compte plusieurs critères :

- [1] Contexte épidémiologique: biologie de la tique cible, espèce hôte, conduite de l'élevage, taille de l'élevage et objectif de la lutte (éradication des tiques ou lutte contre les infections transmises par les tiques).
- [2] Composante financière : coût de la lutte (prix de l'acaricide, coût de la main d'œuvre, du temps d'attente et du temps de retrait). Ce coût est à comparer aux pertes potentielles induites par les tiques.
- [3] *Toxicité des acaricides* : pour l'animal traité, le manipulateur, le consommateur et l'environnement.
- [4] *Dimension humaine*: observance des protocoles et propension à payer les acaricides.

La lutte contre les tiques peut avoir trois objectifs :

[1] Arrêter la transmission des infections transmises par les tiques

Il s'agit de rompre le rôle pathogène indirect, c'est-à-dire le rôle vecteur des tiques. Il faut éviter que les tiques ne se fixent sur l'animal pendant une durée suffisante pour assurer la transmission des pathogènes. Cette durée est variable en fonction des pathogènes mais elle est en moyenne de 3 jours.

- [2] Éviter les nuisances provoquées par les tiques
   C'est-à-dire estomper le rôle pathogène direct des tiques.
   L'objectif est la diminution de l'intensité d'infestation.
- [3] Rompre le cycle des parasites

  Dans ce cas, l'objectif est d'éradiquer la tique de l'élevage ou de la région.

Il existe plusieurs options de lutte contre les tiques, il faut donc adopter une approche écopathologique en appliquant plusieurs méthodes de lutte pour la réussir, opter pour une seule option ne donne que des résultats partiels ou limités dans le temps.

### Lutte écologique Détiquage manuel

Cette option consiste à chercher et à enlever, périodiquement les tiques qui se sont fixées sur l'animal.

Il faut porter des gants lors de la manipulation des tiques car elles risquent de transmettre au manipulateur des zoonoses (fièvre hémorragique de Crimée Congo et fièvre boutonneuse méditerranéenne). Cette option de lutte est intéressante car elle n'a aucun impact négatif sur l'environnement et n'engage aucun coût pour le propriétaire, à part la charge du travail.

Cette option doit être adoptée uniquement lorsque le nombre d'animaux est faible (cas des animaux de compagnie ou chez les petits éleveurs d'animaux de rente) ou lorsque l'intensité d'infestation est faible. Dans tous les autres cas, cet outil ne permet que de diminuer la population parasitaire mais ne prévient pas la transmission de pathogènes par les tiques. En effet, quelques tiques peuvent passer inaperçues pour le propriétaire.

#### Lutte acaricide

L'utilisation d'acaricides dans le milieu extérieur est à proscrire vu son impact très négatif sur l'environnement, sa rémanence dans le milieu extérieur et l'absence d'effets sélectifs. En effet, les acaricides agissent également sur les acariens et les insectes non nuisibles (cas des pollinisateurs, des mellifères, des décomposeurs...). Elle ne doit être indiquée que dans des situations biens précises : risque élevé pour la santé humaine, très grande population de tiques ou dans les habitations humaines infestées par les tiques. A l'exception de ces indications, les acaricides doivent être utilisés exclusivement sur les animaux ou dans les locaux d'élevage.

Le temps d'attente pour la viande et le temps de retrait pour le lait doivent être respectés et ce afin d'éviter (comme pour tout autre xénobiotique administré aux animaux) les résidus pour le consommateur.

#### Résistance aux acaricides

La résistance des tiques aux acaricides est un problème qui est apparu depuis les années 90 en Australie chez les tiques appartenant au genre *Boophilus* (*Rhipicephalus*). Il s'agit d'une résistance génétique (qui se transmet par les gènes d'une génération à une autre). Cette résistance est de ce fait persistante pendant plusieurs années.

La prévention de l'apparition de résistances aux tiques peut être obtenue par la mise en place des mesures suivantes :

#### Utilisation des acaricides

- Utilisation raisonnée des acaricides : l'utilisation d'acaricides doit être motivée par une indication médicale, dans le cas contraire, il faut accepter un niveau d'infestation minimum (notamment chez les ovins et les dromadaires).
- Penser à faire des rotations d'acaricides ayant des modes d'actions différents.
- Associer deux méthodes de lutte, cette approche est connue sous le nom de gestion intégrée des ravageurs (*IPM* pour *Integrated Pest Management*). Par exemple, la vaccination à un effet synergique sur l'utilisation de lactones macrocycliques dans la lutte contre les tiques du genre *Boophilus* (*Rhipicephalus*).

La diversité des situations d'hôtes, d'espèces de tiques et de contextes épidémiologiques fait que la lutte contre les tiques est une action qui nécessite une bonne connaissance du contexte épidémiologique et de la biologie de la tique. Le nombre important d'actions de lutte, de contextes épidémiologiques et d'acaricides explique la difficulté rencontrée dans la lutte contre les tiques.

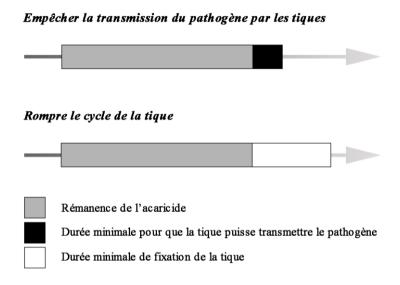



Figure 15 : Rythme d'application des acaricides en fonction de l'objectif du programme de lutte

### Crépissage et lissage des murs

Cette action sur les locaux associée à un nettoyage des locaux d'élevage et des périmètres qui les entourent permet de détruire les gîtes des tiques endophiles tel que *Hyalomma scupense* qui est le vecteur de la theilériose tropicale bovine en Afrique du Nord (infection par *Theileria annulata*). Cette option de lutte peut être également utilisée pour lutter contre la

tique brune du chien, *Rhipicephalus sanguineus*. Dans ce cas, des précautions sont à prendre car cette espèce vit dans les habitations humaines. A côte de son efficacité quasiment totale sur la destruction des gîtes, cette action de lutte permet d'améliorer le niveau d'hygiène générale des locaux d'élevage en aidant à la lutte contre plusieurs autres maladies d'élevage (tuberculose, diarrhées, mammites...). De plus, elle a l'avantage d'être respectueuse de l'environnement, de la santé de l'Homme et des animaux. Des études de pertinence financière réalisées dans le contexte tunisien ont démontré que cette option de lutte a le ratio bénéfice-coût le plus élevé pour la lutte contre la theilériose tropicale bovine aussi bien dans la situation d'enzootie instable.

### **Postface**

Ce nouvel ouvrage du Professeur Mohamed Gharbi est comme les précédents très clair, bien documenté et facile à utiliser pour remettre en mémoire des notions qui auraient pu échapper aux praticiens confrontés à des problèmes pathologiques multifactoriels où parfois l'incidence du parasitisme peut-être oubliée ou mésestimée.

Ce guide pratique présente très clairement les divers ectoparasites et les endoparasites des animaux qui les hébergent ainsi que les différentes molécules antiparasitaires avec leurs spectres d'activités. Ces éléments sont complétés par des développement sur les tiques et la lutte contre ces acariens dont l'importance en tant que vecteurs méritait d'être rappelée une fois encore. Il en est de même pour les strongvloses des petits ruminants dont l'impact est souvent négligé à cause des vermifugations plus ou moins irrégulières, plus souvent en relation avec la disponibilité des éleveurs plutôt qu'avec la infestations parasitaires réalité des et des épidémiologiques dépendant des conditions climatiques mais aussi de la physiologie des femelles. Très judicieusement, la dernière partie de ce guide a été consacrée aux techniques de diagnostic parasitologique facilement utilisables dans un cabinet avec un minimum d'équipement de base.

Ce guide pratique s'adresse aux étudiants vétérinaires en premier et deuxième cycle mais aussi aux vétérinaires praticiens qui peuvent très rapidement retrouver plusieurs données relatives aux parasites et à certaines parasitoses majeures.

Certains rappels qui auraient pu être fastidieux apparaissent, sous la plume du Pr Gharbi, très faciles à mémoriser et à replacer lors de l'anamnèse dans les troupeaux ou en médecine individuelle. Ainsi présentée, la Parasitologie apparaît comme une discipline très vivante.

Pr Philippe Dorchies Toulouse, 20 février 2020

# Quelques traductions de noms de parasites

| Français                   | Arabe littéraire         | Arabe<br>vernaculaire | Anglais                                                        |
|----------------------------|--------------------------|-----------------------|----------------------------------------------------------------|
| Abeille                    | نحلة                     | نحلة                  | Bee                                                            |
| Acarien                    | سوس                      |                       | Mite                                                           |
| Amibiase                   | الأميبية                 |                       | Amoebiasis                                                     |
| Ankylostome                | الملقوات الشصية          |                       | Hookworm                                                       |
| Arthropode                 | المفطيات                 |                       | Arthropoda                                                     |
| Babésiose                  | داء البابسيات            | بوصفير لكحل           | Babesiosis                                                     |
| Boule d'eau du<br>boucher  | الكيسية المذنبة          |                       | Bladderworm                                                    |
| Cafard                     | صرصور                    | خنفوس                 | Cockroach                                                      |
| Cestode                    | صرصور<br>الدودة الشريطية |                       | Tapeworm                                                       |
| Cheyletiella               |                          |                       | Walking dandruff mite                                          |
| Coccidiose                 | الكوكسيديا               |                       | Coccidiosis                                                    |
| Culicoides                 |                          |                       |                                                                |
| Arabis                     |                          |                       | Midge                                                          |
| Moucherons                 |                          |                       |                                                                |
| Démodécie                  | داء الدويديات            |                       | Demodicosis                                                    |
| Dermanyssus                | واخز الجلد               | بغبش                  | Red mite                                                       |
| Dicrocoelium               | متفرعة المعى             |                       | Lancet liver fluke                                             |
| Diptère                    | ثنائية الاجنحة           |                       | Diptera                                                        |
| Dipylidium                 | ذات المنفذين             | حناش                  | Flea tapeworm<br>Cucumber tapeworm<br>Double-pored<br>tapeworm |
| Échinococcose<br>hydatique | مرض الكيس المائي         |                       | Echinococosis                                                  |
| Fasciolose                 | متورقة كبدية             | فر ططو                | Fasciolosis                                                    |
| Gale                       | الجرب                    | الجرب                 | Scabies<br>Mange                                               |
| Gastérophiles              | أليفات المعدة            |                       | Stomach Bot fly                                                |
| Gastérophilidés            | أليفات المعدة            |                       | Gasterophilidae                                                |
| Giardiose                  | الجيارديات               |                       | Giardiasis                                                     |
| Habronémose                | داء الأغشية              | طمطومة                | Habronema                                                      |
| Haemonchus                 |                          |                       | Barber pole worm                                               |
| Ver mirliton               |                          |                       | •                                                              |
| Helminthe                  | الديدان الطفيلية         |                       | Helminth                                                       |

| Français         | Arabe littéraire                         | Arabe<br>vernaculaire | Anglais                            |
|------------------|------------------------------------------|-----------------------|------------------------------------|
| Hippobosque      | الشَّعْراء                               | شعرانة                | Horse-fly                          |
| Histomonose      | داء النيسجات                             |                       | Histomoniasis                      |
| Hyalomma         | القر اد                                  | دلم                   | Tick                               |
| dromedarii       | _                                        | ,                     |                                    |
| Hypoderme        | النغف الجلدي<br>الاحتشار                 | درن                   | Warble fly                         |
| Infestation      | الاحتشار                                 |                       | Infestation                        |
| Imago            | اليافعة                                  |                       | Imago                              |
| Insecte          | حشرة                                     | حشرة                  | Insect                             |
| Larve            | يرقة                                     |                       | Larvae (pl. larvae)                |
| Leishmanie       | الليشمانيا                               |                       | Leishmania                         |
| Leishmaniose     | داء الليشمانيات                          |                       | Leishmaniasis                      |
| Lucilie bouchère | الدودة اللولبية                          |                       | Screw-worm                         |
| Melophagus, faux | لَاكِعَةُ                                | ره حاراته             | Sheep ked                          |
| pou du mouton    | الغَنَمِيَّة المَواشِي<br>متعددة الخلايا | بوحيت                 | Sheep ked                          |
| Métazoaire       | متعددة الخلايا                           |                       | Metazoan                           |
| Mouche           | الذباب                                   | الذباب                | Singuler: fly                      |
|                  | <del></del> /                            | <del></del> -         | Pluriel: flies                     |
| Mouche bleue     | الذباب الأزرق                            |                       | Blue bottle fly                    |
| Mouche à viande  | 0,5,5,5,5,5                              |                       | Dide source in                     |
| Mouche           | الذباب                                   | الذباب                | House fly                          |
| domestique       |                                          |                       | •                                  |
| Moustique        | بعوض<br>النغف                            |                       | Mosquito                           |
| Myiase           | النغف                                    |                       | Myiasis                            |
| Myiase cavitaire | ذبابة النِبْر                            | ثمن <i>ي</i><br>دودة  |                                    |
| Nématode         | الديدان الخيطية                          |                       | Roundworm                          |
| Nymphe           | حورية<br>داء السرميات                    |                       | Nymph                              |
| Oxyure           | داء السرميات                             |                       | Pinworm                            |
| Paludisme        | ملاريا                                   | وخم                   | Malaria                            |
| Parasite         | طفیلی                                    |                       | Parasite                           |
| Parasitose       | داء الطفيليات                            |                       | Parasitosis                        |
| Phlébotome       | ذبابة الرمل                              | وشواشة                | Sandfly                            |
| Pou              | قملة                                     | قملة                  | Singuler : louse<br>Pluriel : lice |
| Protozoaire      | الأوالي                                  |                       | Protozoan                          |

| Français                 | Arabe littéraire                              | Arabe<br>vernaculaire | Anglais                             |
|--------------------------|-----------------------------------------------|-----------------------|-------------------------------------|
| Puce                     | بر غوث                                        | بر غوث                | Singulier : flea<br>Pluriel : fleas |
| Punaise                  | علة                                           | بق                    | Bug<br>Leech                        |
| Sangsue                  | علقة                                          | علق                   | Leech                               |
| Sarcophagidés            | المُستلجمات                                   |                       | Sarcophagidae                       |
| Signe de la bouteille    |                                               | قلقوم                 | Bottle jan                          |
| Simulie                  |                                               |                       | Black fly                           |
| Stigmate                 | ثقب تنفس                                      |                       | Spiracle                            |
| Stomoxe                  |                                               |                       |                                     |
| Mouche                   |                                               |                       | Stable fly                          |
| charbonneuse             |                                               |                       |                                     |
| Strongylose              | دودة الرئة                                    |                       | Lungworm                            |
| respiratoire             |                                               |                       | )                                   |
| Surra                    | الدباب<br>التانشينيات                         | الدباب                | Surra                               |
| Tachinidés               |                                               |                       | Tachinidae                          |
| Taon                     | النُّعَرَية<br>ذُبابُ الفَرَس<br>ذُبابُ الخيل | نعرة<br>تبيبة         | Horse fly                           |
| Taenia                   | ذُبابُ الخيل<br>الدودة الشريطية               | حناش                  | Tapeworm                            |
| Teigne                   | القوباء الحلقية                               | فرتسة<br>قرعة         | Ringworm                            |
| Theilériose<br>tropicale | الحمى المدارية                                |                       | Tropical theileriosis               |
| Tique                    | القراد                                        | القراد                | Tick                                |
| Tique dure               | القراد الصلب                                  |                       | Hard tick                           |
| Toxocara canis           | السهمية الكلبية<br>دودة الكلب<br>الأسطوانية   |                       | Dog roundworm                       |
| Toxocarose               | داء السهميات                                  |                       | Toxocariasis                        |
| Toxoplasmose             | داء المقوسات                                  |                       | Toxoplasmosis                       |
| Trématode                | المثقوبات                                     |                       | Fluke                               |
| Trichure                 | مسلكةً                                        |                       | Whipworm                            |
| Trypanosome              | المثقبية                                      |                       | Trypanosoma                         |
| Trypanosomiase           | داء المثقبيات                                 |                       | Trypanosomiasis                     |
| Varroase                 | قراد النحل                                    | فاروا                 | varroosis                           |

| Français | Arabe littéraire | Arabe<br>vernaculaire | Anglais |
|----------|------------------|-----------------------|---------|
| Vecteur  | ناقلات           |                       | Vector  |
| Ver      | دودة             | دودة                  | Worm    |

### **Bibliographie**

### **Ouvrages**

**Acha P, Szyfres B.** 2005. Zoonoses et maladies transmissibles communes à l'homme et aux animaux. Volume 1, Bactérioses et mycoses : Volume 2, Chlamydioses,... et viroses ; Volume 3,

Zoonoses parasitaires

**Édition :** OIE. 1185 pages **ISBN-10 :** 9290446315

*Prix*: 144 €

L'ouvrage de référence en matière de zoonoses

### Bourdoiseau G. 2000. Parasitologie clinique du chien. 455 pages.

Édition : Nouvelles Éditions Vétérinaires et Alimentaires

**ISBN-10** : 2951604602

*Prix* : 40 €

Excellent ouvrage de parasitologie du chien. Cet ouvrage contient plusieurs encadrés relatifs à la parasitologie et à la pharmacologie des antiparasitaires pour une lecture à deux vitesses. Les parasitoses sont classées en fonction des symptômes et des syndromes

### **Dorchies P, Duncan J, Losson B, Alzieu J-P.** 2012. Parasitologie clinique des bovins. 342 pages

**Édition :** Med'Com **ISBN-10 :** 2354030797

*Prix* : 65 €

C'est un excellent vade-mecum qui aborde les parasitoses par symptômes (ou syndrome). Ce livre est de lecture facile, il est très utile pour les cliniciens

### **Lefevre P-C, Blancou J, Chermette R, Uilenberg G.** (sous la direction de) 2010. Infectious and parasitic diseases of livestock. 2 000 pages

Édition: Technique et Documentation

ISBN-10: 2743008725

*Prix* : 182 €

C'est une vraie référence de parasitologie et de maladies infectieuses. Cet ouvrage de deux mille pages a été rédigé par plusieurs spécialistes de renommée internationale. Il existe une édition en français mais elle est beaucoup plus vieille!

### **Mehlhorn H.** (sous la direction de) 2001. Encyclopedic reference of parasitology. 697 pages

Édition: Springer-Verlag Berlin and Heidelberg GmbH & Co. 2<sup>me</sup> edition

ISBN-10: 3540668195

*Prix* : 211 €

Approche encyclopédique de la parasitologie médicale et vétérinaire. Le classement des sujets est fait par ordre alphabétique. Convient à une bibliothèque ou à des laboratoires spécialisés en parasitologie

### **Taylor MA, Coop RL, Wall RL.** 2015. Veterinary parasitology. 1056 pages

Édition: Wiley-Blackwell. 4° édition

**ISBN-10**: 0470671629

*Prix* : 156 €

Excellent ouvrage de parasitologie. Le classement est fait par espèce animale hôte

### Revues de parasitologie 82

#### Bulletin de l'Académie Vétérinaire de France

Éditeur : Académie Vétérinaire de France

Accès : gratuit

*URL:* http://documents.irevues.inist.fr/handle/2042/47354 Collection d'environ 6 000 articles (depuis 1948) en français accessibles gratuitement à partir du site de la revue

### Bulletin de la Société de Pathologie Exotique<sup>80</sup>

Éditeur : Société de Pathologie Exotique

Accès: sommaires, résumés et textes complets sont mis en ligne gratuitement sur le site de la SPE, au fur et à mesure, après 18 mois de parution.

*URL*: http://www.pathexo.fr/1301-presentation-bulletin.html Collection de plusieurs centaines d'articles

### Free Medical Journals

Accès : gratuit

URL: http://freemedicaljournals.com

Site regroupant les revues médicales en ligne gratuites

La majorité des revues offrent aux auteurs la possibilité de publier leurs articles en Accès Libre (Open Access). Cette tendance est en train de se généraliser.

<sup>&</sup>lt;sup>89</sup> La Société française de Pathologie Exotique a changé de nom, elle est devenue la Société Francophone de Médecine et Santé Internationale.

### Journal of Parasitic Diseases

**Éditeur**: Springer

Accès: par abonnement

URL: https://www.springer.com/journal/12639

Publie des articles de parasitologie médical et vétérinaire

#### One Health

Éditeur : Elsevier Accès : gratuit

URL: https://www.journals.elsevier.com/one-health/

Revue spécialisée dans les articles en relation avec le concept One

Health (une seule santé)

#### **Parasite**

Éditeur : EDP

Accès : toute la collection (plus de 1 000 articles) est disponible

gratuitement en ligne

URL : http://parasite-journal.org/

C'est une revue publiée par la Société Française de Parasitologie

### Parasite Epidemiology and Control

**Éditeur :** Elsevier **Accès :** gratuit

URL: https://www.journals.elsevier.com/parasite-epidemiology-and-

control

Publie des articles internationaux d'épidémiologie parasitaire et de prévention

### Parasites and Vectors

Éditeur : BioMed Central

Accès : gratuit

URL: http://www.parasitesandvectors.com

Revue électronique de parasitologie médicale et vétérinaire

### Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux

Éditeur : CIRAD, France

Accès: gratuit

URL: https://revues.cirad.fr/index.php/REMVT/index

Cette revue dispose d'une collection d'environ 3 000 articles dont plusieurs concernenet la parastiologie en régions tropicales (dont l'Afrique du Nord)

### Revue de Médecine Vétérinaire

Éditeur : École Nationale Vétérinaire de Toulouse

Accès: gratuit

URL: http://www.revmedvet.com/

Revue généraliste de médecine vétérinaire, elle publie des articles en

français et en anglais

### Trends in Parasitology

Éditeur : Elsevier

Accès : par abonnement

URL: http://www.cell.com/trends/parasitology/home

Publie des articles de revue en parasitologie médicale et vétérinaire.

Les articles sont d'un très haut niveau et très bien illustrés

### Veterinary Dermatology

**Éditeur** : Wiley

Accès: seuls quelques articles sont accessibles gratuitement URL: https://onlinelibrary.wiley.com/journal/13653164

Revue spécialisée en dermatologie vétérinaire

### Veterinary Parasitology

**Éditeur** : Elsevier

Accès : par abonnement

URL: http://www.journals.elsevier.com/veterinary-parasitology

Spécialisée dans la publication d'articles de recherche et de revues en

parasitologie en anglais

### Veterinary Parasitology: X

Éditeur : Elsevier Accès : gratuit

URL: https://www.sciencedirect.com/journal/veterinary-parasitology-

X

C'est le journal miroir de Veterinary Parasitology

### Veterinary Parasitology, Regional Studies and Reports

**Éditeur** : Elsevier

Accès : par abonnement

URL: https://www.journals.elsevier.com/veterinary-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-parasitology-pa

regional-studies-and-reports

Revue de parasitologie publiant des articles relatifs à des études

régionales

### Webographie

### Association Mondiale pour l'Avancement de la Parasitologie Vétérinaire (World Association for the Advancement of Veterinary Parasitology)

URL: https://www.waavp.org

Très riche en informations, il contient surtout les guides et les standards de plusieurs tests de référence

### Comité Scientifique Européen sur les Parasites des Animaux de Compagnie (European Scientific Counsel Companinon Animal Parasite)

URL: https://www.esccap.org

Continent plusieurs guides relatifs à tous les parasites des carnivores. Les guides en anglais sont plus à jour que ceux en français

### Dermavet

URL: http://dermavet.com

Conçu par un vétérinaire dermatologue. Ce site est très riche en cas cliniques, articles, bibliothèque d'images...

### Manuel Merck, Manuel Vétérinaire (Merck Manual, Veterinary Manual)

URL: https://www.merckvetmanual.com

Un site complet présentant toutes les maladies animales. C'est un site très utile pour les praticiens

### Google scholar

URL: http://scholar.google.fr/

Contient un nombre impressionnant d'articles, de documents et de rapports. Le moteur de recherche est mal fait puisque la recherche avancée est difficile

### Librairie Nationale de Médecine (National Library of Medicine)

URL: http://www.ncbi.nlm.nih.gov/

Ce site contient environ 30 millions de références en plusieurs langues (bien évidemment l'anglais est la langue dominante). Accès direct à des résumés et certains articles complets. Recherche par mots clés : maladie, pays, auteur, ou une combinaison de plusieurs critères

#### Pharmacie Centrale de Tunisie

URL : http://www.phct.com.tn

Site de la pharmacie Centrale, contient une liste des médicaments vétérinaires et humains ayant des AMM en Tunisie.

### Société Américaine de Dirofilaires (American heartworm Society)

URL: https://www.heartwormsociety.com

Très riche et à jour offrant plusieurs ressources sur la dirofilariose

### Société Australienne de Parasitologie (The Australian Society for Parasitology)

URL: https://www.parasite.org.au

À notre connaissance, c'est la société de parasitologie la plus active au monde

### Société Européenne de Dermatologie Vétérinaire (European Society of Veterinary Dermatology)

URL: https://www.esvd.org

### Association Mondiale de Dermatologie Vétérinaire (World

Association for Veterinary Dermatology)

URL: https://wavd.org/continuing-education/webinars/
Comporte surtout plusieurs webinars gratuits de dermatologie

### Vetofocus

Plusieurs cas cliniques, il est possible d'y trouver des cas de parasitologie avec des discussions entre les praticiens et des avis émis par des experts

URL: http://www.vetofocus.com/

Achevé d'imprimé en avril 2020 sur les presses de l'imprimerie *Publipresse* 9, rue Osmane El Bahri, Bab El Assal El Omrane 1005, Tunis, Tunisie

\_\_\_\_\_

ISBN n° 978-9938-59-125-5

## FRONTLINE Combo

Formule antiparasitaire enrichie à l'IGR

















### Un chien protégé par Dolpac™ Toute une famille heureuse

Faire le coupe-circuit du kyste hydatique